scholarly journals Emissions of nitrous acid (HONO), nitric oxide (NO), and nitrous oxide (N2O) from horse dung

2016 ◽  
Vol 25 (4) ◽  
pp. 225-229 ◽  
Author(s):  
Marja Elisa Maljanen ◽  
Zafar Gondal ◽  
HemRaj Bhattarai

Horse dung contains considerable amounts of nitrogen which is partly lost during the storage period. Leaching of nitrogen from the dung can be prevented with constructions but also gaseous N-emissions occur. However, the emission rates are not reported in the literature. We measured in laboratory conditions nitrous oxide (N2O), nitric oxide (NO) and nitrous acid (HONO) emissions from fresh, one month old and one year old horse dung samples. NO and HONO emissions increased with the storage time of the dung. The mean emission rates of HONO and NO were from 36 to 280 ng N kg dw-1h-1 and from 15 to 3500 ng N kg dw-1h-1, respectively. N2O emissions were more variable showing also highest emissions (20.3 µg N kg dw-1 h-1) from the oldest samples. Thus, the longer storage of horse dung increases gaseous N losses which should be taken into account when planning the environmental friendly way to handle horse dung.

2001 ◽  
Vol 1 ◽  
pp. 312-319 ◽  
Author(s):  
Eric A. Davidson ◽  
Mercedes M.C. Bustamante ◽  
Alexandre de Siqueira Pinto

This paper reviews reports of nitrous oxide (N2O) and nitric oxide (NO) emissions from soils of the Amazon and Cerrado regions of Brazil. N2O is a stable greenhouse gas in the troposphere and participates in ozone-destroying reactions in the stratosphere, whereas NO participates in tropospheric photochemical reactions that produce ozone. Tropical forests and savannas are important sources of atmospheric N2O and NO, but rapid land use change could be affecting these soil emissions of N oxide gases. The five published estimates for annual emissions of N2O from soils of mature Amazonian forests are remarkably consistent, ranging from 1.4 to 2.4 kg N ha–1 year–1, with a mean of 2.0 kg N ha–1 year–1. Estimates of annual emissions of NO from Amazonian forests are also remarkably similar, ranging from 1.4 to 1.7 kg N ha–1 year–1, with a mean of 1.5 kg N ha–1 year–1. Although a doubling or tripling of N2O has been observed in some young (<2 years) cattle pastures relative to mature forests, most Amazonian pastures have lower emissions than the forests that they replace, indicating that forest-topasture conversion has, on balance, probably reduced regional emissions slightly (<10%). Secondary forests also have lower soil emissions than mature forests. The same patterns apply for NO emissions in Amazonia. At the only site in Cerrado where vegetation measurements have been made N2O emissions were below detection limits and NO emissions were modest (~0.4 kg N ha–1 year–1). Emissions of NO doubled after fire and increased by a factor of ten after wetting dry soil, but these pulses lasted only a few hours to days. As in Amazonian pastures, NO emissions appear to decline with pasture age. Detectable emissions of N2O have been measured in soybean and corn fields in the Cerrado region, but they are modest relative to fluxes measured in more humid tropical agricultural regions. No measurements of NO from agricultural soils in the Cerrado region have been made, but we speculate that they could be more important than N2O emissions in this relatively dry climate. While a consistent pattern is emerging from these studies in the Amazon region, far too few data exist for the Cerrado region to assess the impact of land use changes on N oxide emissions.


2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Nadia Elyassi ◽  
Ali Malekzadeh Shafaroudi ◽  
Pegah Nasiri ◽  
Mahmood Moosazadeh ◽  
Azam Nahvi

Context: Conflicting results have been reported in the literature concerning the relationship between salivary nitrous oxide concentration and dental caries in children. Metaanalysis studies aim to combine different studies and reduce the difference between the parameters by increasing the number of studies involved in the analysis process. Objectives: Accordingly, this meta-analysis study aimed at determining the relationship between salivary nitrous oxide concentration and dental caries in children. Methods: Databases were searched using the keywords “nitric oxide”, “salivary”, “Caries”, “DMFT Index”, “children”, “early childhood caries” and OR, AND and NOT operators. Quality assessment was then performed based on the Newcastle-Ottawa scale (NOS) checklist. The standardized mean difference (SMD) of DMFT, dmft, and salivary nitric oxide (NO) concentration was estimated. Results: Seven studies made a comparison between the mean salivary NO concentration in children with dental caries and that in the control group. In four studies, the mean salivary NO concentration in children with dental caries was lower, as compared to that in the control group. This difference was significant in all four studies. Also, the mean standardized difference of the salivary NO index was also estimated to be -0.11 (CI 95%: -1.77, 1.55). Conclusions: This meta-analysis study demonstrated that salivary NO concentration was not significantly related to dental caries. Moreover, since salivary NO concentration is affected by various factors, it is not sufficient to determine the likelihood of the incidence of caries.


2008 ◽  
Vol 48 (2) ◽  
pp. 160 ◽  
Author(s):  
L. C. Smith ◽  
C. A. M. de Klein ◽  
R. M. Monaghan ◽  
W. D. Catto

A study was conducted in Southland, New Zealand to: (i) measure nitrous oxide (N2O) emissions and nitrate (NO3–-N) leaching losses from a cattle-grazed, winter forage crop; and (ii) quantify the effect of dicyandiamide (DCD) in reducing these losses. Drainage losses were measured for 12 months (December 2005–November 2006) from a December-sown kale crop using 12 hydrologically isolated drainage plots at the Woodlands Research Station. N2O emissions were measured for 6 months (June–November) following simulated grazing of the crop in mid-June. N2O emissions from the bare ground following grazing of the crop amounted to 3.6 kg nitrogen (N)/ha for the winter–spring period. This figure is higher than that measured for pasture on the same soil type over a similar period. DCD application significantly reduced N2O emissions for the whole crop area by 25% over this period and reduced the N2O emission factor for urine by 54%. DCD application increased the length of time mineral N (0–10 cm soil depth) was maintained in the ammonium form and significantly reduced soil NO3–-N levels for 6 weeks following the simulated grazing. Annual NO3–-N losses in drainage under this winter forage crop were relatively high at 79 kg N/ha.year, with the majority of this (67%) being lost over the wet summer months (December–January rainfall 434 mm or 200% of normal) during crop growth. The application of DCD following the grazing resulted in a 47% decrease in NO3–-N leached over the winter–spring period (26 kg N/ha v. 14 kg N/ha) with this equating to a 29% decrease over the full 12-month measurement period. This study suggested that winter forage crops are major contributors to N losses from livestock farming systems in Southland and that DCD application following the grazing of such crops by cattle can significantly reduce N2O emissions and leaching N losses.


2015 ◽  
Vol 39 (5) ◽  
pp. 1498-1506 ◽  
Author(s):  
Michely Tomazi ◽  
Emanuelle Cavazini Magiero ◽  
Joice Mari Assmann ◽  
Tatiane Bagatini ◽  
Jeferson Dieckow ◽  
...  

ABSTRACT Livestock urine and dung are important components of the N cycle in pastures, but little information on its effect on soil nitrous oxide (N2O) emissions is available. We conducted a short-term (39-day) trial to quantify the direct N2O-N emissions from sheep excreta on an experimental area of ryegrass pasture growing on a Typic Paleudult in southern Brazil. Four rates of urine-N (161, 242, 323, and 403 kg ha-1 N) and one of dung-N (13 kg ha-1 N) were applied, as well as a control plot receiving no excreta. The N2O-N emission factor (EF = % of added N released as N2O-N) for urine and dung was calculated, taking into account the N2O fluxes in the field, over a period of 39 days. The EF value of the urine and dung was used to estimate the emissions of N2O-N over a 90-day period of pasture in the winter under two grazing intensities (2.5 or 5.0 times the herbage intake potential of grazing lambs). The soil N2O-N fluxes ranged from 4 to 353 µg m-2h-1. The highest N2O-N fluxes occurred 16 days after application of urine and dung, when the highest soil nitrate content was also recorded and the water-filled pore space exceeded 60 %. The mean EF for urine was 0.25 % of applied N, much higher than that for dung (0.06 %). We found that N2O-N emissions for the 90-day winter pasture period were 0.54 kg ha-1 for low grazing intensity and 0.62 kg ha-1 for moderate grazing intensity. Comparison of the two forms of excreta show that urine was the main contributor to N2O-N emissions (mean of 36 %), whereas dung was responsible for less than 0.1 % of total soil N2O-N emissions.


1895 ◽  
Vol 57 (340-346) ◽  
pp. 265-287 ◽  

I. Density of Nitrogen from Various Sources . In a former paper it has been shown that nitrogen extracted from chemical compounds is about ½ per cent. lighter than “atmospheric nitrogen.’’ The mean numbers for the weights of gas contained in the globe used were as follows:— Grams. From nitric oxide...................... 2⋅3001 From nitrous oxide...................... 2⋅2990 From ammonium nitrite ...... 2⋅2987


2008 ◽  
Vol 48 (2) ◽  
pp. 14 ◽  
Author(s):  
C. A. M. de Klein ◽  
R. J. Eckard

Nitrous oxide (N2O) emissions account for ~10% of global greenhouse gas (GHG) emissions, with most of these emissions (~90%) deriving from agricultural practices. Animal agriculture potentially contributes up to 50% of total agricultural N2O emissions. In intensive animal agriculture, high N2O emission rates generally coincide with anaerobic soil conditions and high soil NO3–, primarily from animal urine patches. This paper provides an overview of animal, feed-based and soil or management abatement technologies for ruminant animal agriculture targeted at reducing the size of the soil NO3– pool or improving soil aeration. Direct measurements of N2O emissions from potential animal and feed-based intervention technologies are scarce. However, studies have shown that they have the potential to reduce urinary N excretion by 3–60% and thus reduce associated N2O emissions. Research on the effect of soil and water management interventions is generally further advanced and N2O reduction potentials of up to 90% have been measured in some instances. Of the currently available technologies, nitrification inhibitors, managing animal diets and fertiliser management show the best potential for reducing emissions in the short-term. However, strategies should always be evaluated in a whole-system context, to ensure that reductions in one part of the system do not stimulate higher emissions elsewhere. Current technologies reviewed here could deliver up to 50% reduction from an animal housing system, but only up to 15% from a grazing-based system. However, given that enteric methane emissions form the majority of emissions from grazing systems, a 15% abatement of N2O is likely to translate to a 2–4% decrease in total GHG emissions at a farm scale. Clearly, further research is needed to develop technologies for improving N cycling and reducing N2O emissions from grazing-based animal production systems.


Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 60
Author(s):  
P. Quin ◽  
N. Swarts ◽  
G. Oliver ◽  
S. Paterson ◽  
J. Friedl ◽  
...  

The application of nitrate (NO3–) fertiliser is important worldwide in providing nitrogen (N) nutrition to perennial fruit trees. There is little information available on N losses to the environment from commercial cherry orchards, in relation to different timings of NO3– application. The emission of nitrous oxide (N2O) gas is an important greenhouse gas loss from NO3– application, being responsible for 6% of anthropogenic global warming and a catalyst for depletion of stratospheric ozone. In a commercial sweet-cherry orchard in southern Tasmania, we applied 373 g NO3–-N m–2 (equivalent to 90 kg NO3–-N ha–1) either pre- or post-harvest, or equally split between the two, to study the resultant N2O emissions. Emissions averaged 8.37 mg N2O-N m–2 day–1 during the pre-harvest period, primarily driven by a heavy rainfall event, and were significantly greater (P &lt; 0.05) than the average 4.88 × 10–1 mg N2O-N m–2 day–1 from post-harvest NO3– application. Discounting the emissions related to the rainfall event, the resultant average 1.88 mg N2O-N m–2 day–1 for the rest of the pre-harvest emissions remained significantly greater (P &lt; 0.05) than those post-harvest. Ongoing studies will help to build on these results and efforts to minimise N2O emissions in perennial tree cropping systems.


Author(s):  
M. Zaman ◽  
K. Kleineidam ◽  
L. Bakken ◽  
J. Berendt ◽  
C. Bracken ◽  
...  

AbstractMethods and techniques are described for automated measurements of greenhouse gases (GHGs) in both the laboratory and the field. Robotic systems are currently available to measure the entire range of gases evolved from soils including dinitrogen (N2). These systems usually work on an exchange of the atmospheric N2with helium (He) so that N2 fluxes can be determined. Laboratory systems are often used in microbiology to determine kinetic response reactions via the dynamics of all gaseous N species such as nitric oxide (NO), nitrous oxide (N2O), and N2. Latest He incubation techniques also take plants into account, in order to study the effect of plant–soil interactions on GHGsand N2 production. The advantage of automated in-field techniques is that GHG emission rates can be determined at a high temporal resolution. This allows, for instance, to determine diurnal response reactions (e.g. with temperature) and GHG dynamics over longer time periods.


2019 ◽  
pp. 335-365
Author(s):  
Thomas Behrendt ◽  
Nurit Agam ◽  
Marcus A. Horn

Sign in / Sign up

Export Citation Format

Share Document