scholarly journals Effect of liming on the fate of applied superphosphate phosphorus in some mineral soils

1967 ◽  
Vol 39 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Armi Kaila

The effect of liming on the distribution of superphosphate phosphorus in various fractions of soil phosphorus was studied. Samples of four mineral soils (pH 3.9 to 5.1) were incubated at room temperature for eight months with 0, 0.5, or 1.0 per cent CaCO3, and with 0.40 per cent superphosphate or without any phosphate application. Liming increased the soil pH-values to pH 6.1—7.3. Samples were analyzed for inorganic phosphorus by the fractionation method of CHANG and JACKSON. Results obtained after an incubation period of four months showed that, both in the fertilized and unfertilized samples, liming had increased the fluoride soluble, acid soluble and easily soluble fractions, but it had decreased the alkali soluble phosphorus. These effects were generally the more distinct, the higher the application of CaCO3 had been. During the prolonged incubation, the alkali soluble fraction tended to increase at the expense of the fluoride soluble phosphorus. The differences in the phosphorus content of various fractions in the respective fertilized and unfertilized samples showed that the »superphosphate phosphorus» was mainly recovered as the fluoride soluble and alkali soluble forms, the relative amount of the latter being the lower the heavier the liming had been. Yet, even at about pH 7, from one fifth to one fourth of the applied phosphorus appeared to be sorbed by iron compounds and ocurred in the alkali soluble fraction. The sum of the proportions of easily soluble and fluoride soluble phosphorus increased with liming. The small parts of fertilizer phosphorus recovered in the acid soluble form did not depend on the rate of liming. Thus, even at pH 7, no significant turning of superphosphate phosphorus in difficultly soluble apatite like secondary calcium phosphates could be detected. The effect of liming on the availability of the fertilizer phosphorus and on the phosphate retention pattern of the soil, was discussed.

1965 ◽  
Vol 37 (2) ◽  
pp. 104-115
Author(s):  
Armi Kaila

The distribution of applied water-soluble phosphorus in the various fractions of soil inorganic phosphorus was studied in an incubation experiment under the laboratory conditions. Samples of twelve soils were incubated for three months at room temperature with the applications of KH2P04 in amounts corresponding to 100, 200, or 500 mg P/kg of soil. The results of the fractionation showed that in most samples the applied phosphorus could be found almost completely in the fluoride-soluble and alkali-soluble fractions, the part of the former being the higher and that of the latter the lower the higher the rate of the phosphate application. Similar results were obtained also when the fractionation was performed after the samples had been in contact with the phosphate solutions only for two hours. Analyses of samples from two field trials were in accordance with these results. The soils tended to have a characteristic pattern of phosphate retention which in extreme cases means an almost complete sorption of the applied phosphate either as the fluoride-soluble form or as the alkali-soluble form. In most soils, however, the distribution was more equal. Usually the fluoride-soluble part of the recovered phosphorus tended to be somewhat higher than the alkali-soluble part. This tendency was more distinct in regard to the newly retained phosphorus. The effect of phosphate fertilizers in our soils is discussed on the basis of the results.


1965 ◽  
Vol 37 (4) ◽  
pp. 243-254
Author(s):  
Armi Kaila

The effect of liming on the soil phosphorus fractions was studied under the laboratory conditions. 28 samples of mineral soils (pH in 0.01 M CaCl2 suspension 4.0 to 6.0) were incubated with 1 per cent CaCO3 or without lime for six months at about 18—20°C. In an other experiment, six samples (pH from 3.3 to 4.3) were incubated with 0, 0.5, 1, or 2 per cent CaCO3 also for six months. At the end of the incubation period the soil pH in the limed samples of the first experiment ranged from pH 5.9 to pH 7.5, in the second experiment the highest application kept the soil pH at 6.5 to 7.0. In the air-dried samples the content of organic phosphorus and the fractions of inorganic phosphorus were determined, and the increases or decreases due to the incubation and liming were calculated. Incubation without lime brought about decrease in the organic phosphorus content of several samples, and the presence of lime tended to intensify this effect, although only in a few cases the decrease due to liming was statistically significant. Liming also tended to increase the accumulation of NH4F-soluble inorganic phosphorus. The acid-soluble fraction was often increased in the limed samples but not in the unlimed ones. The alkali-soluble fraction was decreased in most soils in the limed samples, while it increased in some of the unlimed ones. In the second experiment the incubation caused marked decrease in the alkali-soluble phosphorus without a corresponding increase in the other phosphorus fractions determined in the subsoil samples. It was concluded that in these experiments the relatively heavy liming in the first place affected the distribution of inorganic phosphorus increasing the NH4F-soluble and acid-soluble forms at the expense of the alkali-soluble fraction. The effect on the mineralization of organic phosphorus seemed to be in most soils of minor importance.


1938 ◽  
Vol 28 (2) ◽  
pp. 234-246 ◽  
Author(s):  
L. A. Dean

1. Extractions of soils with sodium hydroxide, followed by an acid, have been used in an attempt to fractionate the soil phosphorus.2. Colorimetric methods for the estimation of the organic and inorganic phosphorus in alkali soil extracts have been suggested.3. The amount of soil phosphorus soluble in sodium hydroxide is affected by the active soil calcium. It is suggested that sodium-saturated soils be used when studying the alkali-soluble phosphorus.4. The acid-soluble phosphorus remaining in soil after extraction with sodium hydroxide was determined. This fraction appears by analogy to be similar to the apatites.5. The largest fraction of the total soil phosphorus was not dissolved by the sodium hydroxide and acid extractions. This fraction was not increased by the long-continued use of phosphatic fertilizers at Rothamsted and Woburn.6. Relatively large amounts of organic phosphorus were found in soils and the amounts were closely related to the carbon contents.


1989 ◽  
Vol 61 (2) ◽  
pp. 55-59 ◽  
Author(s):  
Helinä Hartikainen

Surface soil samples were collected from 16 P fertilization trials before onset of the experiments and after seven years of cultivation. The changes in the inorganic P fractions were investigated in plots amended annually with 0, 30 or 60 kg of P ha-1. In the clay soils, cultivation without P fertilization depleted the NH4F-extractable and NaOH-extractable P reserves by 22—69 kg ha-1 ; in the coarser soils, the respective depletion was 8—140 kg ha-1. H2S04-soluble P decreased in seven soils by 16—34 kg ha-1. In the plots amended totally with 210 or 420 kg of P ha-1, on the other hand, these P fractions increased by 24—174 and 46—368 kg ha-1, respectively. The higher the P dressing was, the more the added P tended to accumulate in the fluoride-soluble form as compared to the alkali-soluble form.


1960 ◽  
Vol 54 (3) ◽  
pp. 341-347 ◽  
Author(s):  
M. T. Friend ◽  
H. F. Birch

Phosphate responses of wheat in a number of soil types have been correlated with the amounts of phosphate extracted by ten different methods. Of these only total organic phosphorus, and inorganic phosphorus extracted with hot 0·1N caustic soda, were significantly related to phosphate response, the former at the 1% level and the latter at the 5% level. The amount of organic phosphorus in the soil was also found to be significantly related, in each instance at the 5% level, to phosphate responses of grass and the percentage phosphate in the grass. When the amount of organic phosphorus was considered together with the phosphate retention capacity of the soil, to give a measure of available mineralized phosphate, the relationships to response (and uptake of phosphorus by grasses) was more significant than with organic phosphorus alone.The organic phosphorus fraction accounted for about 86% of the total soil phosphorus. Measurable amounts of water-soluble organic phosphorus were found with all the soils. The amounts were, however, not significantly related to phosphate response. Moreover, it was found that while the soil extract containing organic phosphorus decomposed, it did so without the production of mineral phosphate. From this, and further evidence in the literature, it is considered that the organic complex in the soil, rather than the water soluble phosphorus, is the main source for the plant.


1964 ◽  
Vol 36 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Armi Kaila

Inorganic phosphorus in 363 samples of Finnish mineral soils was fractionated by the procedure of CHANG and JACKSON. The average content of total inorganic phosphorus determined as the difference of the total phosphorus and organic phosphorus tended to increase from sand to clay soils. The sand and fine sand soils appeared to be richer in fluoride-soluble phosphorus but poorer in acid-soluble phosphorus than the other groups of soils. The part of phosphorus extracted by alkali seemed to be almost independent on the soil texture. In about 60 per cent of the samples the acid-soluble phosphorus was the dominant inorganic phosphorus fraction, in spite of the often high acidity of the soil. This, in connection with the rather low content of reductant soluble phosphorus, was taken to indicate the relatively low degree of weathering in these soils. The higher contents of fluoride-soluble and alkali-soluble phosphorus in the surface samples of the cultivated soils as compared with the corresponding kind of virgin soils or soils from the deeper layers may be mainly attributed to the application of phosphorus fertilizers and to a somewhat higher degree of weathering. The soil pH did not seem to play any important role among the factors related to the distribution of inorganic phosphorus into various fractions in the present material. This was particularly true in the cultivated surface soils. It is likely, that in our soils the variation in the contents of active iron and aluminium will to a higher degree than pH explain the variation in the fractions of alkali-soluble and fuoride-soluble phosphorus. The relatively high content of the latter fraction in the sand and fine sand soils as compared with the soils of the finer texture could be related to the higher ratio of ammonium oxalate soluble aluminium to iron in the former soils.


1928 ◽  
Vol 18 (3) ◽  
pp. 397-400 ◽  
Author(s):  
A. I. Malan

In regard to phosphorus partition, the same general relationship holds between the blood of lambs and of the mother ewes, as between the blood of calves and the mother cows. Total phosphorus is about twice as high in lamb blood as in maternal blood, inorganic phosphorus about twice as high, and organic acid-soluble phosphorus about three times as high. A considerable proportion of an acid-insoluble phosphorus fraction, probably nuclein, may be present in the red corpuscles of lamb blood and may even be present in foetal blood. The organic acid-soluble fraction is confined to the corpuscles, both in young blood and adult blood, but i n one case of a six-month calf foetus a small proportion was noted in plasma.


1964 ◽  
Vol 36 (1) ◽  
pp. 65-76
Author(s):  
Armi Kaila

The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the sorbed phosphorus and such soil properties as pH, the contents of acid oxalate soluble aluminium and iron, organic carbon, the phosphate sorption capacity and the degree of phosphate saturation. Only in the subsoil samples, 76 per cent of the variation in the net increase in the fluoride-soluble fraction could be explained by the variation on the content of oxalate-soluble aluminium, and in the topsoil samples the oxalate-soluble iron and pH determined 61 per cent of the variation in the net increase in the alkali-soluble phosphorus. The ratio of oxalate-soluble aluminium to iron was more closely correlated with the ratio between the total amounts of fluoride-soluble and alkali-soluble phosphorus than with the ratio between the corresponding sorbed amounts. In the topsoils, it explained 70 per cent of the variation in the former. The distribution of the retained phosphorus did not depend on the soil pH, its content of organic carbon, or its degree of phosphate saturation but there was some tendency to a higher accumulation of alkali-soluble phosphorus compared with the fluoride-soluble forms with an increase in the phosphate sorption capacity of the soil.


2015 ◽  
Vol 24 (2) ◽  
pp. 297-308
Author(s):  
A. Barbaro

The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.


Sign in / Sign up

Export Citation Format

Share Document