scholarly journals Effects of soil moisture on the germination and emergence of sugar beet (beta vulgaris l.)

1975 ◽  
Vol 47 (1) ◽  
pp. 1-70 ◽  
Author(s):  
Erkki Aura

By means of theoretical calculations and laboratory experiments, this study attempted to elucidate the effects of excessive and of inadequate soil moisture on the germination and seedling emergence of sugar beet. The results of this study confirmed the opinion that water contained in the sugar beet seed or surrounding the seed as a water film is a barrier to the adequate intake of oxygen by the seed only when the value of the water potential is close to zero. The soil water potential at which the passage of oxygen into the seed is prevented depends largely on the structure of the seed bed. With a semi-permeable membrane of cellulose acetate and a solution of polyethylene glycol, it was shown that the sugar beet seed will still germinate fairly well at a potential of —10 atm, but at —13 atm germination is slight. The soil water potential appeared to have nearly the same effect on germination as did the water potential of the polyethylene glycol solution. The seedling emergence percentage was, however, smaller than the germination percentage in experiments with the semi-permeable membrane. This was considered to be caused by the slow extension growth of the radicle due to a low water potential, at the stage of seedling emergence. According to studies made, the initial water intake of the sugar beet seed planted in soil is rapid. Poor contact between the seed and the soil slows down water intake and seedling emergence, but does not impair the final seedling emergence. Removal of the fruit coat was shown to improve germination markedly when the water potential is low. This treatment would have little practical significance, since the growth of the radicle at a low water potential is very slow.

Koedoe ◽  
2014 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Buitenwerf ◽  
Andrew Kulmatiski ◽  
Steven I. Higgins

Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.


2019 ◽  
Vol 35 (1) ◽  
pp. 39-50
Author(s):  
H. C. Pringle, III ◽  
L. L. Falconer ◽  
D. K. Fisher ◽  
L. J. Krutz

Abstract. Irrigated acreage is expanding and groundwater supplies are decreasing in the Mississippi Delta. Efficient irrigation scheduling of soybean [ (L.) Merr] will aid in conservation efforts to sustain groundwater resources. The objective of this study was to develop irrigation initiation recommendations for soybean grown on Mississippi Delta soils. Field studies were conducted on a deep silty clay (SiC) in 2012, 2013, 2014, and 2015 and on a deep silty clay loam (SiCL) and deep silt loam (SiL) or loam (L) soil in 2013, 2014, and 2015. Irrigation was initiated multiple times during the growing season and soybean yield and net return were determined to evaluate the effectiveness of each initiation timing. Growth stage, soil water potential (SWP), and soil water deficit (SWD) were compared at these initiation timings to determine which parameter or combination of parameters consistently predicted the resulting greatest yields and net returns. Stress conditions that reduce yield can occur at any time from late vegetative stages to full seed on these deep soils. The wide range of trigger values found for SWP and SWD to increase yields in different years emphasizes the complexity of irrigation scheduling. Monitoring soil moisture by itself or use of a single trigger value is not sufficient to optimize irrigation scheduling to maximize soybean yield with the least amount of water every year on these soils. Monitoring one or more parameters (e.g., leaf water potential, canopy temperature, air temperature, humidity, solar radiation, and wind) is needed in conjunction with soil moisture to directly or indirectly quantify the abiotic stresses on the plant to better define when a yield reducing stress is occurring. Keywords: Irrigation initiation, Irrigation scheduling, Soil water deficit, Soil water potential, Soybean, Water conservation.


2019 ◽  
Vol 62 (2) ◽  
pp. 363-370
Author(s):  
Ruixiu Sui ◽  
Horace C. Pringle ◽  
Edward M. Barnes

Abstract. One of the methods for irrigation scheduling is to use sensors to measure the soil moisture level in the plant root zone and apply water if there is a water shortage for the plants. The measurement accuracy and reliability of the soil moisture sensors are critical for sensor-based irrigation management. This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, the MPS-2 and 200SS soil water potential (SWP) sensors, and the 200TS soil temperature sensor. Six 183 cm × 183 cm × 71 cm wooden compartments were built inside a greenhouse, and each compartment was filled with one type of soil from the Mississippi Delta. A total of 66 sensors with 18 data loggers were installed in the soil compartments to measure SVWC, SWP, and soil temperature. Soil samples were periodically collected from the compartments to determine SVWC using the gravimetric method. SVWC measured by the sensors was compared with that determined by the gravimetric method. The SVWC readings from the sensors had a linear regression relationship with the gravimetric SVWC (r2 = 0.82). This relationship was used to calibrate the sensor readings. The SVWC and SWP sensors could detect the general trend of soil moisture changes. However, their measurements varied significantly among the sensors. To obtain accurate absolute soil moisture measurements, the sensors require individual and soil-specific calibration. The 5TM, MPS-2, and 200TS sensors performed well in soil temperature measurement tests. Individual temperature readings from these sensors were very close to the mean of all sensor readings. Keywords: Irrigation, Sensors, Soil types, Soil water content, Soil water potential.


2012 ◽  
Vol 170-173 ◽  
pp. 2407-2413 ◽  
Author(s):  
Wei Chen ◽  
Dao Cai Chi ◽  
En Bo Tai ◽  
Xu Dong Zhang ◽  
Tao Tao Chen

Pot experiments were conducted under different status of soil moisture potential during different stages of rice. The results show that soil moisture potential regulation and control is able to increase the rice yield at each growth stages after returning green, the suitable soil water potential criteria for middle-season rice in Liaoning province at different stages is 5~10kPa in tillering initial stage, 35kPa at most in tillering final stage, 5~10kPa in jointing and heading stages, not more than 20kPa in Milk maturity stage; re-watering post drought has a compensation effect to rice whose soil suction potential is controlled in 5~10kPa at tillering initial stage according to the results that its tillers number, output, final root dry biomass and leaf dry weight were significant exceeding contrast; The research on rice quality indicates that water stress in jointing stage increase protein content but reduce eating quality.


Koedoe ◽  
2014 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Buitenwerf ◽  
Andrew Kulmatiski ◽  
Steven I. Higgins

Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.


Koedoe ◽  
2014 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Buitenwerf ◽  
Andrew Kulmatiski ◽  
Steven I. Higgins

Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.


2021 ◽  
Author(s):  
Marinos Eliades ◽  
Adriana Bruggeman ◽  
Hakan Djuma ◽  
Melpomeni Siakou ◽  
Panagiota Venetsanou ◽  
...  

<p>The water storage in soil is a dynamic process that changes with soil, vegetation and climate properties. Water retention curves, that describe the relationship between the soil water content (θ) and the soil water potential (ψ), are used to model soil water flow and root water uptake by the plants. The overall objective of this study is to derive the retention curves of soils at two forested (Agia Marina, Platania) and two irrigated (Galata, Strakka) sites in Cyprus from in-situ soil moisture and soil water potential observations. <br>The long-term (1980 – 2010) average annual rainfall at Strakka olive grove (255 m elevation), Agia Marina P. brutia forest (640 m), Galata peach orchard (784 m) and Platania P. brutia forest (1160 m) is 298, 425, 502 and 839 mm, respectively.  The average soil depth at Agia Marina is 14 cm, while at other sites it is around 1 m. We installed a total of 18 TEROS21 soil water potential sensors, 37 5TM and 19 SMT100 soil moisture sensors, at different soil depths at the four sites. <br>Results from January 2019 to January 2021 show differences in the water retention curves of the four sites due to different soil textures. At the forested sites, θ reached wilting point at the summer period, indicating that trees extend their roots beyond the soil profile, to the bedrock in order to survive. At the irrigated sites, θ exceeds field capacity during irrigation, indicating over-irrigation. We found different water retention relations after rainfall and after irrigation, indicating that irrigation has an uneven spatial distribution. These findings suggest that the irrigation in these fields is not optimal and farmers may need to increase the number of irrigation drippers, while reducing the irrigation amount per dripper. From a monitoring perspective, increasing the number of sensors may give a better representation of the soil moisture conditions. <br>The research has received financial support from the ERANETMED3 program, as part of the ISOMED project (Environmental Isotope Techniques for Water Flow Accounting), funded through the Cyprus Research and Innovation Foundation.</p>


1979 ◽  
Vol 59 (3) ◽  
pp. 259-264 ◽  
Author(s):  
R. DE JONG ◽  
K. F. BEST

Daily emergence counts were made on Canthatch wheat (Triticum aestivum L.) grown in five soil types, at four soil temperatures and three water potentials and planted at five different depths. Regardless of soil type, soil water potential or depth of planting, 50% emergence generally occurred within a week at 19.4 and 26.7 °C, and within 2 wk at 12.2 °C, but it took up to 6 wk at 5 °C. The heat sum required to attain 50% seedling emergence did not increase significantly with decreasing soil water potentials, but the minimum temperature for emergence dropped from 1.3 to 0.2 °C as the water potential decreased from −⅓ to −10 bar. It was suggested that the seedlings compensated for the increased water stress by lowering their minimum temperature requirements. Increasing the planting depth not only increased the heat requirement for emergence, but it also increased the variability of emergence, especially at low temperatures. Practical aspects concerning planting dates and depths were considered.


2012 ◽  
Vol 60 (4) ◽  
pp. 328 ◽  
Author(s):  
Michael P. Perring ◽  
Mark J. Hovenden

Recruitment is central to the maintenance of any plant population, particularly in disturbed or drought-prone environments. Recruitment relies on both seedling emergence and subsequent survival to establishment, processes susceptible to changes in soil water potential. Here, we use an existing relationship between seedling survivorship and soil water potential from the TasFACE global change impacts experiment situated in Tasmanian grassland, elucidate relationships between rainfall and soil water potential, and then simulate seedling survivorship responses to potential changes in both the amount and seasonal distribution of precipitation. Annual rainfall was a poor predictor of survivorship, suggesting the importance of seasonal and daily distribution of rain in determining establishment patterns. Modelled seedling survivorship was remarkably resistant to declines in rainfall, with a rainfall reduction of 40% reducing survivorship only by ~10%. Reducing spring rainfall only markedly reduced seedling survivorship when the rain removed was not added to winter rainfall. Our results show that soil water recharge during winter is critical to seedling survivorship of perennial species at the study site. Providing rainfall regimes allow recharge to occur, seedling survivorship of perennial grassland species may be maintained despite large reductions in rainfall, indicating that these grassland species may have an inherent capacity that limits the impacts of reductions in rainfall.


Sign in / Sign up

Export Citation Format

Share Document