The Zero-Point Oscillations in the Planck Vacuum State and Its Coordinate Uncertainty

2021 ◽  
Vol 6 (4) ◽  
pp. 13-15
Author(s):  
William C. Daywitt

This short paper argues that the charged quantum oscillators in the quasi-continuum Planck vacuum (PV) state are responsible for the zero-point oscillations in that state. The Planck particle (PP) quantum energy levels for the oscillators are derived from first principles. The PV coordinate uncertainty concerning the PV structure easily follows from these results.

2011 ◽  
Vol 25 (06) ◽  
pp. 413-418
Author(s):  
JI-SUO WANG ◽  
KE-ZHU YAN ◽  
BAO-LONG LIANG

Starting from the classical equation of the motion of a domain wall in the ferromagnetic systems, the quantum energy levels of the wall and the corresponding eigenfunctions in the case of considering damping term are given by using the canonical quantization method and unitary transformation. The quantum fluctuations of displacement and momentum of the moving wall has also been given as well as the uncertain relation.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Can Ding ◽  
Zhenjiang Gao ◽  
Xing Hu ◽  
Zhao Yuan

The contact is the core element of the vacuum interrupter of the mechanical DC circuit breaker. The electrical conductivity and welding resistance of the material directly affect its stability and reliability. AgSnO2 contact material has low resistivity, welding resistance, and so on. This material occupies an important position of the circuit breaker contact material. This research is based on the first-principles analysis method of density functional theory. The article calculated the lattice constant, enthalpy change, energy band, electronic density of state, charge density distribution, population, and conductivity of Ce, C single-doped, and Ce-C codoped SnO2 systems. The results show that Ce, C single doping, and Ce-C codoping all increase the cell volume and lattice constant. When the elements are codoped, the enthalpy change is the largest, and the thermal stability is the best. It has the smallest bandgap, the most impurity energy levels, and the least energy required for electronic transitions. The 4f orbital electrons of the Ce atom and the 2p orbital electrons of C are the sources of impurity energy near the Fermi level. When the elements are codoped, more impurity energy levels are generated at the bottom of the conduction band and the top of the valence band. Its bandgap is reduced so conductivity is improved. From the charge density and population analysis, the number of free electrons of Ce atoms and C atoms is redistributed after codoping. It forms a Ce-C covalent bond to further increase the degree of commonality of electrons and enhance the metallicity. The conductivity analysis shows that both single-doped and codoped conductivity have been improved. When the elements are codoped, the conductivity is the largest, and the conductivity is the best.


2016 ◽  
Vol 30 (13) ◽  
pp. 1642008 ◽  
Author(s):  
S. P. Kruchinin

Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov–de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.


A method for regularizing spectral determinants is developed which facilitates their computation from a finite number of eigenvalues. This is used to calcu­late the determinant ∆ for the hyperbola billiard over a range which includes 46 quantum energy levels. The result is compared with semiclassical periodic orbit evaluations of ∆ using the Dirichlet series, Euler product, and a Riemann-Siegel-type formula. It is found that the Riemann-Siegel-type expansion, which uses the least number of orbits, gives the closest approximation. This provides explicit numerical support for recent conjectures concerning the analytic proper­ties of semiclassical formulae, and in particular for the existence of resummation relations connecting long and short pseudo-orbits.


2011 ◽  
Vol 1370 ◽  
Author(s):  
Peter A. Schultz

ABSTRACTThe structures, energies, and energy levels of a comprehensive set of simple intrinsic point defects in aluminum arsenide are predicted using density functional theory (DFT). The calculations incorporate explicit and rigorous treatment of charged supercell boundary conditions. The predicted defect energy levels, computed as total energy differences, do not suffer from the DFT band gap problem, spanning the experimental gap despite the Kohn-Sham eigenvalue gap being much smaller than experiment. Defects in AlAs exhibit a surprising complexity—with a greater range of charge states, bistabilities, and multiple negative-U systems—that would be impossible to resolve with experiment alone. The simulation results can be used to populate defect physics models in III-V semiconductor device simulations with reliable quantities in those cases where experimental data is lacking, as in AlAs.


The use of first principles variational calculations for the calculation of high-lying energy levels, wavefunctions and transition intensities for triatomic molecules is considered. Theoretical developments are considered, including the use of generalized internal coordinates, the use of a two-step procedure for rotationally excited systems and a finite element method known as the discrete variable representation. Illustrative calculations are presented including ones for H 2, LiCN and the Ar-N2 Van der Waals molecule. A first principles ‘rotational’ spectrum of H 2D+ is computed using states up to J = 30. The transition intensities in this spectrum are reproduced accurately in a frozen dipole approximation but are poorly represented by models that involve approximating the wavefunction.


1980 ◽  
Vol 21 (4) ◽  
pp. 834-839 ◽  
Author(s):  
L. Nitti ◽  
M. Pellicoro ◽  
M. Villani

2008 ◽  
Vol 22 (20) ◽  
pp. 1931-1939
Author(s):  
QINFENG XU ◽  
ZE CHENG ◽  
YUNXIA PING

In this paper, we introduce the self-consistent field approximation to treat with the nonlinear interaction among spin waves. Then temperature-dependent Bogoliubov transformation is introduced to generate a new representation which engenders the transition from the zero temperature to the finite temperature. At last, temperature-dependent quantum fluctuation properties of magnons are discussed in the thermal field. At lower temperature, we find that the fluctuation of spin-component at some given time regions can be below the zero-point fluctuation level of the vacuum state and exhibit a periodical squeezing behavior. In particular, these squeezed effects vanish with the increasing of temperature. These squeezing effects differ from the previous studies.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745023
Author(s):  
J. T. Wang ◽  
J. D. Fan

In this paper, we carry out a theoretical calculation of quantum state and quantum energy structure in carbon nanotube embedded semiconductor surface. In this theoretical model, the electrons in the carbon nanotube are considered as in a two-dimensional cylindrical surface. Their motion, therefore, can be described by the Dirac equation. We solve the equation and find that the energy levels are quantized and are linearly dependent on the wave vectors along the [Formula: see text]-direction that is along the direction of the nanotube. This type of energy structure may have potential application for fabricating high efficiency solar cell or quantum bit in computer chips.


Sign in / Sign up

Export Citation Format

Share Document