scholarly journals Inner structure and kinematics of the Sushchany-Perga fault zone of the Ukrainian Shield according to the tectonophysical study

2021 ◽  
Vol 43 (1) ◽  
pp. 142-159
Author(s):  
S.V. Mychak ◽  
L.V. Farfuliak

The field tectonophysical works were carried out in the upper reaches of the Ubort River basin along the Zolnia-Maidan-Kopischany fault. The research aim was determination of the inner structure and kinematics of the Sushchany-Perga fault zone of the western pfrt of the Ukrainian Shield. For investigation of fracturing and structural-textural elements of rocks the structural-paragenetic method of tectonophysics was used. It was determined that formation of the Sushchany-Perga fault zone continued during at least five phases of deformation. They were accompanied by the formation of differently oriented shear zones: Khmelivka, Sushchany, Perga, Rudnia-Khochin, Lopatychi. The Khmelivka and Sushchany shear zones are similar to striking of the Nemyriv and Khmelnik fault zones of the Ukrainian shield, which belong to the Nemyriv stage of faulting (~1.99 Ga). The Rudnia-Khochin and Perga phases are related to the fact that the Sushchany-Perga fault zone was quite active during the junction of the Fennoscandia and Sarmatia microplates. We have established that the development of thrust fault and normal down throw fault type shears, which took place in an area of compression and extension, respectively, is associated with the formation period of the Perga granitoids complex (1.80—1.70 Ga).This alternation of the compression and extension conditions has led to formation of the ore occurrences and deposits within the Perga tectonic joint. This investigation found that the Sushchany-Perga fault zone arose in the Late Paleoproterozoic at the Nemirov stage of fracture formation, simultaneously with Goryn, Lutsk, Teteriv and Nemyriv fault zones as a result of the junction of two ancient microplates — Fennoscandia and Sarmatia.

2007 ◽  
Vol 40 (4) ◽  
pp. 1586 ◽  
Author(s):  
N. Palyvos ◽  
D. Pantosti ◽  
L. Stamatopoulos ◽  
P. M. De Martini

In this communication we discuss reconnaissance geomorphological observations along the active Psathopyrgos and Rion-Patras (NE part) fault zones. These fault zones correspond to more or less complex rangefronts, the geomorphic characteristics of which provide hints on the details of the fault zone geometries, adding to the existing geological data in the bibliography. Aiming at the identification of locations suitable or potentially suitable for geomorphological and geological studies for the determination of fault slip rates in the Holocene, we describe cases of faulted Holocene landforms and associated surficial deposits. We also discuss problems involved in finding locations suitable for geological (paleoseismological) studies for the determination of the timing of recent earthquake ruptures, problems due to both man-made and natural causes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Akiyuki Iwamori ◽  
Hideo Takagi ◽  
Nobutaka Asahi ◽  
Tatsuji Sugimori ◽  
Eiji Nakata ◽  
...  

AbstractDetermination of the youngest active domains in fault zones that are not overlain by Quaternary sedimentary cover is critical for evaluating recent fault activity, determining the current local stress field, and mitigating the impacts of future earthquakes. Considering the exhumation of a fault zone, the youngest active domain in a fault zone is supposed to correspond to the activity at the minimum fault depth of a buried fault, such that the most vulnerable area, which possesses the lowest rock/protolith density ratio, is assumed to be indicative of this recent fault activity. However, it is difficult to measure the density of fault rocks and map the rock/protolith density ratio across a given fault zone. Here, we utilize medical X-ray computed tomography (CT), a non-destructive technique for observing and analyzing materials, to investigate the fault characteristics of several fault zones and their surrounding regions in Japan, and attempt to determine the lowest density domain of a given fault zone based on its CT numbers, which are a function of the density and effective atomic number of the fault rock and protolith. We first investigate the density, void ratio, and effective atomic number of active and inactive fault rocks, and their respective protoliths. We then calculate the CT numbers after reducing the beam-hardening effects on the rock samples and study the relationships among the CT number, density, and effective atomic number. We demonstrate that the density, effective atomic number, and CT number of the fault rock decrease as the youngest active zone, identified by outcrop observation, are approached, such that the region with the lowest CT number and rock/protolith density ratio defines the lowest density domain of a given fault zone. We also discuss the relationship between the lowest density domain and the youngest active domain in major fault zones and investigate the points to be considered when the youngest active domain is identified from the lowest density domain determined by the CT number.


2011 ◽  
Vol 62 (4) ◽  
pp. 345-359 ◽  
Author(s):  
Erman Özsayin ◽  
Kadir Dirik

The role of oroclinal bending in the structural evolution of the Central Anatolian Plateau: evidence of a regional changeover from shortening to extensionThe NW-SE striking extensional Inönü-Eskişehir Fault System is one of the most important active shear zones in Central Anatolia. This shear zone is comprised of semi-independent fault segments that constitute an integral array of crustal-scale faults that transverse the interior of the Anatolian plateau region. The WNW striking Eskişehir Fault Zone constitutes the western to central part of the system. Toward the southeast, this system splays into three fault zones. The NW striking Ilıca Fault Zone defines the northern branch of this splay. The middle and southern branches are the Yeniceoba and Cihanbeyli Fault Zones, which also constitute the western boundary of the tectonically active extensional Tuzgölü Basin. The Sultanhanı Fault Zone is the southeastern part of the system and also controls the southewestern margin of the Tuzgölü Basin. Structural observations and kinematic analysis of mesoscale faults in the Yeniceoba and Cihanbeyli Fault Zones clearly indicate a two-stage deformation history and kinematic changeover from contraction to extension. N-S compression was responsible for the development of the dextral Yeniceoba Fault Zone. Activity along this structure was superseded by normal faulting driven by NNE-SSW oriented tension that was accompanied by the reactivation of the Yeniceoba Fault Zone and the formation of the Cihanbeyli Fault Zone. The branching of the Inönü-Eskişehir Fault System into three fault zones (aligned with the apex of the Isparta Angle) and the formation of graben and halfgraben in the southeastern part of this system suggest ongoing asymmetric extension in the Anatolian Plateau. This extension is compatible with a clockwise rotation of the area, which may be associated with the eastern sector of the Isparta Angle, an oroclinal structure in the western central part of the plateau. As the initiation of extension in the central to southeastern part of the Inönü-Eskişehir Fault System has similarities with structures associated with the Isparta Angle, there may be a possible relationship between the active deformation and bending of the orocline and adjacent areas.


2021 ◽  
Author(s):  
akiyuki iwamori ◽  
Hideo Takagi ◽  
Nobutaka Asahi ◽  
Tatsuji Sugimori ◽  
Eiji Nakata ◽  
...  

Abstract Determination of the youngest active domains in fault zones that are not overlain by Quaternary sedimentary cover are critical for evaluating recent fault activity, determining the current local stress field, and mitigating the impacts of future earthquakes. Considering the exhumation of a fault zone, the youngest active domain in a fault zone is supposed to correspond to the activity at the minimum fault depth of a buried fault, such that the most vulnerable area, which possesses the lowest rock/protolith density ratio, is assumed to be indicative of this recent fault activity. However, it is difficult to measure the density of fault rocks and map the rock/protolith density ratio across a given fault zone. Here we utilize medical X-ray computed tomography (CT), a non-destructive technique for observing and analyzing materials, to investigate the fault characteristics of several fault zones and their surrounding regions in Japan, and attempt to determine the youngest active domain of a given fault zone based on its CT numbers, which are a function of the density and effective atomic number of the fault rock and protolith. We first investigate the density, void ratio, and effective atomic number of active and inactive fault rocks, and their respective protoliths. We then calculate the CT numbers after reducing the beam-hardening effects on the rock samples, and study the relationships among the CT number, density, and effective atomic number. We demonstrate that the density, effective atomic number, and CT number of the fault rock decrease as the youngest active zone is approached, such that the region with the lowest CT number and rock/protolith density ratio defines the youngest active domain of a given fault zone.


2018 ◽  
Vol 55 (10) ◽  
pp. 1139-1157 ◽  
Author(s):  
Francis Guay ◽  
Pierre Pilote ◽  
Réal Daigneault ◽  
Vicki McNicoll

The Malartic Lakeshore showing is a gold-bearing quartz vein system located within the major Rivière-Héva fault zone (RHFZ) of the southern Abitibi greenstone belt. This fault separates the 2702–2700 Ma felsic Héva Formation from the 2708 Ma mafic-ultramafic Dubuisson Formation. A swarm of thin diorite dykes with lamprophyric facies and gold-bearing quartz veins are present only on the Dubuisson side of the fault. The 30–70 cm thick gold quartz veins are boudinaged and folded. Veins are banded and associated with pyrite, chalcopyrite, galena, barite, and gold. The study area is characterized by a high degree of ductile deformation associated with the RHFZ and manifested by the southeast-trending “principal schistosity” (Sp). Stretching lineations plunge moderately to shallowly toward the southeast as a result of shortening followed by late directional shearing during a transpressive deformation. A sample from the Héva Formation yielded a zircon U–Pb age of 2698.2 ± 0.8 Ma, and a diorite dyke produced an age of 2694.3 ± 2.5 Ma. Quartz veins are crosscut by dykes, and both are affected by the Sp fabric, indicating an early emplacement with respect to the deformation. This situation contrasts with the orogenic gold veins found in association with major fault zones. A near-synvolcanic magmatic hydrothermal origin is proposed for this gold vein system. Because all subvertical units in the area are south facing, the presence of the older Dubuisson Formation over the younger Héva Formation is attributed to the RHFZ acting as a significant reverse or thrust fault.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Raka Maulana ◽  
Yulianti Pratama ◽  
Lina Apriyanti

<p>Some areas in the city of Bandung is an area that dilitasi by the flow of the river, to prevent the introduction of garbage into the river basin is necessary to note the waste management systems in residential areas along the river. Cidurian river has a length of 24.86 Km along the river flow. Consists of the city of Bandung and Bandung regency. Administrative regions Cidurian River past eight (8) districts, from the region in the District Kiaracondong precisely Village Babakan Babakan Sari and Surabaya populous and the most densely populated. Thus, there should be community-based waste management in the form of a reduction in resources to prevent potential entry of waste into the river basin. Planning waste reduction will be divided into two, namely the reduction of inorganic waste with waste bank then the reduction of organic waste with absorption holes biopori, and bio reactor mini determination of the reduction is determined by the results of the analysis of the sampling covers the composition and garbage, then the result of the measurement characteristics test and analysis results questionnaire.</p>


2010 ◽  
Vol 44 (11) ◽  
pp. 4103-4109 ◽  
Author(s):  
Shoji F. Nakayama ◽  
Mark J. Strynar ◽  
Jessica L. Reiner ◽  
Amy D. Delinsky ◽  
Andrew B. Lindstrom

Geophysics ◽  
1967 ◽  
Vol 32 (2) ◽  
pp. 297-301 ◽  
Author(s):  
S. N. Domenico

A gravity profile was obtained from closely spaced readings along a traverse approximately nine miles in length across the San Andreas fault zone immediately south of Palmdale, California in the western Mojave Desert. Corrected gravity values show a slight but distinctive minimum associated with the fault zone which may be attributed to the reduced density of the shattered rock masses in the fault zone. The existence of this minimum suggests that major fault zones may be traced across terrain, on which surface expression of the fault does not exist, by successive profiles across the suspected position of the fault zone.


Sign in / Sign up

Export Citation Format

Share Document