scholarly journals ANALISIS REDAMANTERHADAP PERFORMANCEDENSE WAVELENGTH DIVISION MULTIPLEXING (DWDM)PADA SISTEM KOMUNIKASI SERAT OPTIKDENGAN METODE LINK POWER BUDGET DI PT. TELKOM PADANG (STUDI KASUS LINK PADANG – LUBUK BASUNG)

Author(s):  
Farta Wendy Herdianta ◽  
Hanesman Hanesman ◽  
Delsina Faiza

The research was conducted by analyzing the optical fiber attenuation of the DWDM performance in terms of power received on optical fiber communication systems link Padang-Lubuk cone in PT. Telkom Padang. Optical fiber has a very small damping. Therefore optical fibers become the primary choice in telecommunications networks. To improve the transmission quality is better then the use of DWDM technology, DWDM technology is a method to insert a number of channels were transmitted in a single optical fiber. Instruments in this study is the Power Meter and OTDR JDSU MTS-2000 type, the type of cable used G.655 Single Mode type. Link Power Budget method is used to determine the performance of DWDM caused by attenuation based on the value of the received power output receiver. On the link Padang - Lubuk cone highest attenuation occurs in core 1 of 29.742dB with 100.035 km cable lengths, and the core 10 of 31.8 dB with 119.998 km cablelengths. Based on the large fault or attenuation/km core 1 of 0.297 dB/km, the core 10 of 0.265 dB/km and the standard ITU-T was 0.35 dB/km. Value attenuation/km core 1 and core 10 is still in normal conditions and under standard ITU-T 0.35 dB/km. Based on optical fiber attenuation, the results of analysis of the link power budget is the value of Rx is smaller than the value of Rx sensitivity of -27 dBm, it can be said performance DWDM optical fiber communication systems in normal and can be used to operate because the power output can still be accepted by receiver in the device. Keywords:optical fiber cable, optical fiber attenuation, DWDM, link power budget.

Author(s):  
Ilham Sudrajat ◽  
Yasdinul Huda ◽  
Delsina Faiza

Based on the survey data of optical fiber service, the communication network uses optical fiber transmission medium is not maximal yet, because there are some errors in the network, such as the percentage of Network Post Dialing Delay in system is 97.5%, that means there is 2.5% of error a delay occurs in the network when making a call. This research was conducted by analyzing the fiber attenuation of fiber-optic communication systems performance on the link Padang-Bukittinggi in PT. Telkom Padang, SKSO division which uses single mode fiber optic cable types G655. Instrument in this study is the Power Meter and OTDR JDSU MTS-6000 type. Link Power Budget method is used to determine the performance of optical fiber communication systems caused by attenuation based on the value of the received power output. Obtained results on the link Padang-Bukittinggi highest attenuation occurs in core 5 with 26.7226 dB attenuation value and cable length 115 016 km, and in core 7 with 26.1812 dB and cable length 94 462 km. This value is still below of PT. Telkom standard with 28.10352 dB for core 5. While the attenuation value at 7 cores exceeds standard attenuation values​​, with 24.18186 dB, so the performance of the core is declared bad and needs to be evaluated. From optical fiber attenuation value, result of the link power budget analysis is obtained from the calculation of the value of Rx is smaller when compared with -27 dBm the value of Rx sensitivity, it can be said the performance of optical fiber communication systems on the link in the normal state and can be used to operate because the power output can be accepted by the receiver in the device. Keywords: fiber optic cable, optical fiber attenuation, SKSO, link power budget.


The improvement in technology over long distance communication using optical fiber has been regulated over past few decades, and it took drastic enhancement in one of the major parameter for joining two OFC cable (splicing). The different experiments performed in order to bring about the result that can give nearly 0dB splice loss when there is shifting of entire set up of Optical Fiber Communication. The splicing loss is created by the joining of two SMF using fiber optic fusion splicing. The objective of this paper is to determine the low splice loss in joining two single mode or multimode optical fiber, such that long distance communication that required multiple infrastructure assembly for its operational unit can be made relocatable as there is large investment and material and electronic circuitry is associated to it. Therefore to reduce that cost we have sets of analysis that splicing loss can be reduced to 0dB for SMFSMF end face connection or at least no improvement in splice losses while relocation of OFC infrastructure from one place to other place as the result of the tested experiment. Based on experiment conducted we came to conclusion that with essential requirements for establishing a low-loss and high-speed communication line using optical fibers, the need for quality of splicing technology along with perfect core alignment angle is required to reduce splice loss, such that the infrastructure can be shifted to many different location without any additional cost of new material and new resources. The exact measurement of splice loss can be insured by another set of formula which we came across during the experimental performance.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Nandhakumar P ◽  
Arun Kumar

AbstractOptical fiber communication is the backbone of the entire telecommunication industries in the world. In this work, the real-time backbone long-distance optical fibers (single mode) are tested and analyzed with two different wavelengths (1,310 nm and 1,550 nm) with the help of optical time domain reflectometer. Using these two different wavelengths, how the losses and events of the backbone optical fibers are changing are compared and analyzed. This work will give a way to study the nature of long-distance backbone optical fiber and understand the real-time application of the fiber optic communication.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 816
Author(s):  
Chao Wang ◽  
Yajing Zhang ◽  
Zheng Wu ◽  
Qian Wang ◽  
Guoxu Zhang ◽  
...  

In this paper, a pentagonal microstructured optical fiber polarization filter by utilizing a surface plasmon resonance effect is proposed. The characteristics of the mode-coupling and filtering of the filter are studied by making use of the full-vector finite element method. The performance of the filter is greatly affected by the structure parameters. The losses of Y and X polarization of the fiber core are 665.97 and 0.17 dB/cm at 1.55 μm, respectively, and the loss ratio is 3917.47. This shows that the filter has a greater loss ratio. Moreover, both the extinction ratio and tolerance are also researched, which shows that the proposed filter has a wider filtering bandwidth and better fabrication tolerance. The designed filter has an important role in wavelength-division multiplexing (WDM) and coherent optical fiber communication systems.


2020 ◽  
Vol 40 (14) ◽  
pp. 1406003
Author(s):  
黄媛 Huang Yuan ◽  
赵家钰 Zhao Jiayu ◽  
王金东 Wang Jindong ◽  
杜聪 Du Cong ◽  
彭清轩 Peng Qingxuan ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 317-322

Abstract: In modern time, the optical fiber communication has revolutionized the data transmission process and contributed vitally to the development of qualitative and speedy telecommunication systems. The arteries of this system are optical fibers which carry information as light signals and as fast as speed of light. But these light signals suffer energy losses during their propagation through the optical fibers. For the effective functioning of an optical fiber communication, it is necessary to know and prevent the prevailing energy losses (especially external bending losses) of the optical fibers. In this paper, the external bending loss of optical power while propagating through a single-mode optical fiber has been investigated. Further, the effects of wrapping turns (1 to 6 turns) and bending diameters (2 cm ≤ D ≤ 12 cm) on the power loss of laser at a wavelength of 650 nm have been studied. Keywords: Single-mode optical fiber, Bending loss, Attenuation coefficient, Wrapping turns, Bending diameter. PACs: 42.81.-I, 78.67.Pt, 42.25.Bs.


2010 ◽  
Vol 7 (3) ◽  
pp. 1226-1231
Author(s):  
Baghdad Science Journal

In this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system at maximum fiber length at 61.2 km equal to 2.30551×10-12, 47.88526 dB respectively. The power budget for FSC system was calculated to be 29 dB. Results show that the BER increases when the received optical power decreases the due to increase of the optical fiber length61.2 km. while S/N decreases. The optical power budget increases as the transmitted optical power increases.


1991 ◽  
Vol 9 (2) ◽  
pp. 251-260 ◽  
Author(s):  
S. Ryu ◽  
S. Yamamoto ◽  
H. Taga ◽  
N. Edagawa ◽  
Y. Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document