scholarly journals ANALISA PERBANDINGAN ROUTING PROTOKOL PADA WIRELESS SENSOR NETWORKS (WSNs)

Author(s):  
Igor Novid ◽  
Delsina Faiza ◽  
Thamrin Thamrin ◽  
Winda Agustiarmi

The development of Internet use has spurred Wireless Sensor Networks (WSNs) technology so that it becomes a widely researched and applied device. With the need to use high WSNs, the quality of features provided such as high data transfer speeds and the smallest possible disruption is something that should be available. Although some uses of WSNs do not require high speed and have a tolerance for interference, there are very few types of use. Nevertheless, routing protocols are provided to meet the types of data transfer requirements. The protocols available for each type will be analyzed and compared to find out the best performance.Keywords: data transfer, routing protocol, WSN.

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 1846-1871 ◽  
Author(s):  
Muhammad Asif ◽  
Shafiullah Khan ◽  
Rashid Ahmad ◽  
Muhammad Sohail ◽  
Dhananjay Singh

2018 ◽  
Vol 7 (4.12) ◽  
pp. 20
Author(s):  
Navneet Kaur ◽  
Dr. Sahil Verma ◽  
Dr. Kavita

Wireless Sensor Networks(WSNs) comprise sensor nodes which find applications in a wide variety of fields such as medical, wildlife, security, environment, industry. A network communication is initialized and accomplished with the aid of routing protocols. A routing protocol is a set of rules which govern the routing phenomenon. WSNs protocols for the purpose of routing have been the ubiquitous option of the researchers in the recent years due to their exorbitant scope of improvement. The objective of a routing protocol is to inquest for a relevant route amidst sender and receiver to accomplish successful transmission at the destination .Dissipation of energy and lengthening the duration of the network have always been one of the major points of research gaps. As the nodes in WSNs in are battery operated, so they can only use restricted energy to proceed with the communication and transmission operation. To cope up with this, a number of researchers have come up with developments in the field of energy efficacy and optimizations in WSNs routing protocols. A reify summarization of some protocols for routing purposes has been manifested in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hind Alwan ◽  
Anjali Agarwal

With the growing demand for quality-of-service (QoS) aware routing protocol in wireless networks, QoS-based routing has emerged as an interesting research topic. Quality of service guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. In this paper, we present a heuristic neighbor selection mechanism in WSNs that uses the geographic routing mechanism combined with the QoS requirements to provide multiobjective QoS routing (MQoSR) for different application requirements. The problem of providing QoS routing is formulated as link, and path-based metrics. The link-based metrics are partitioned in terms of reliability, delay, distance to sink, and energy, and the path-based metrics are presented in terms of end-to-end delay, reliability of data transmission, and network lifetime. The simulation results demonstrate that MQoSR protocol is able to achieve the delay requirements, and due to optimum path selection process, the achieved data delivery ratio is always above the required one. MQoSR protocol outperforms the existing model in the literature remarkably in terms of reliable data transmission, time data delivery, and routing overhead and underlines the importance of energy-efficient solution to enhance network lifetime.


2018 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sayed Seno ◽  
Doaa Abd Ali ◽  
Mohammed Mohammed

Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-16
Author(s):  
Vinay Rishiwal ◽  
Preeti Yadav ◽  
Omkar Singh ◽  
B. G. Prasad

In recent era of IoT, energy ingesting by sensor nodes in Wireless Sensor Networks (WSN) is one of the key challenges. It is decisive to diminish energy ingesting due to restricted battery lifespan of sensor nodes, Objective of this research is to develop efficient routing protocol/algorithm in IoT based scenario to enhance network performance with QoS parameters. Therefore, keeping this objective in mind, a QoS based Optimized Energy Clustering Routing (QOECR) protocol for IoT based WSN is proposed and evaluated. QOECR discovers optimal path for sink node and provides better selection for sub-sink nodes. Simulation has been done in MATLAB to assess the performance of QOECR with pre-existing routing protocols. Simulation outcomes represent that QOECR reduces E2E delay 30%-35%, enhances throughput 25%-30%, minimizes energy consumption 35%-40%, minimizes packet loss 28%-32%, improves PDR and prolongs network lifetime 32%-38% than CBCCP, HCSM and ZEAL routing protocols.


Author(s):  
Volodymyr Mosorov ◽  
Sebastian Biedroń ◽  
Taras Panskyi

In the 21st century wireless sensor networks have gained much popularity due to their flexibility. This progress has enabled the use of sensor nodes on an unprecedented scale and opened new opportunities for the so-called ubiquitous computerization. The total freedom of nodes distribution within the wireless network, where the wireless characteristic is one of the greatest advantages of the use of wireless sensor networks, implies its greatest weakness, i.e. the limitation of mobile power sources. To overcome this challenge specialized routing protocols, such as LEACH, were ushered in for making the effective use of the energy of the nodes themselves. The purpose of this article is to show how the life of a sensor network depends on the number of nodes equipped with a mobile limited power source.


Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

<p>Wireless Sensor Networks is a group of sensor nodes dispatched in a geographical area for a defined objective. These sensor nodes are characterized by limited capacity of communicating, computing and especially of energy. The performance of these WSN is resting on a good routing protocol, hence the need to choose the routing protocol able to satisfy the wsn's objectives, and to satisfy the common challenge to prolong network life time.</p><p>Several routing concepts have been proposed for the WSN, hierarchical routing is one of the most used concepts. It is divided into 3 types: cluster based routing, grid based routing and chain based protocol. In this paper, we are interested to Study, analyse and compare two popular routing protocols for Wireless sensor networks (WSNs), Low-Energy Adaptive Clustering Hierarchy (LEACH) using clusters based concept and Power-Efficient Gathering in Sensor Information System (PEGASIS) with chain based concept. The both protocols are simulated with Matlab simulator, in order to evaluate its performances against the different users and the WSNs objectives defined.</p>


Sign in / Sign up

Export Citation Format

Share Document