scholarly journals Hydrological Conditions Of Drained Lake Basins Of The Anadyr Lowland Under Changing Climatic Conditions

2021 ◽  
Vol 14 (4) ◽  
pp. 41-54 ◽  
Author(s):  
Оleg D. Tregubov ◽  
Vladimir E. Glotov ◽  
Pavel Ya. Konstantinov ◽  
Vladimir V. Shamov

The lakes of the Arctic lowlands are both the unique indicator and the result of climatic and permafrost changes. Remote sensing methods and field measurements were used to consider the patterns and features of the morphometric indicators dynamics of the Anadyr lowland lakes over 65 years. We analyzed the parameters of 36 lakes with an area of 0.02–0.3 km2 located in the bottoms of drained lake basins, in river floodplains, on sea-shore terraces. Field studies were conducted on 22 typical lakes. The considered dynamics of seasonal thawing are based on the monitoring of the active layer for 1994–2020. Due to an increase of mean annual air temperature by 1.8 °C, as well as an increase and then a decrease in the mean annual precipitation by 135 mm, the average share of a lake area in the study area decreased by 24%. It is shown for the first time that cryogenic processes of the lacustrine coastal zone affect the change in the area of lakes simultaneously with the influence of precipitation and air temperature. Based on field observations, we considered two causes of natural drainage: discharge of the lakes through newly formed thermokarst and thermoerosional surface flow channels and decrease in suprapermafrost groundwater recharge as a result of changing depth of seasonally thawed active layer in the coastal zone.

1960 ◽  
Vol 3 (27) ◽  
pp. 558-567 ◽  
Author(s):  
Marvin Diamond

AbstractMean annual air temperatures and precipitation on the Greenland Ice Sheet, as estimated from snow profile studies and long-term meteorological records at coastal stations, have been used to prepare mean annual air temperature and mean annual precipitation charts for the Greenland Ice Sheet. It is shown that melting of surface snow may occur at elevations of about 1,300 m. in north Greenland and up to 2,700 m. in south Greenland. The warming trend in the Arctic, as indicated by increases in mean annual air temperature, may have occurred to a lesser extent on the ice sheet than at sea-level coastal stations. Annual accumulation of precipitation is two or three times as great at 2,700 m. on the west side of the ice sheet as at the crest. South of lat. 66° N., precipitation may be about twice as great on the east side of the crest as on the west side.


2020 ◽  
Author(s):  
Ekaterina Ezhova ◽  
Dmitry Orlov ◽  
Elli Suhonen ◽  
Dmitry Kaverin ◽  
Alexander Mahura ◽  
...  

<p>Anthrax is a bacterial disease affecting mainly livestock but also posing a risk for humans. During the outbreak of anthrax on Yamal peninsula in 2016, 36 humans were infected and more than 2.5 thousand reindeer died or were killed to prevent further contamination [1]. Anthrax is a natural focal disease, which means that its agents depend on climatic conditions. The revival of bacteria in previously epidemiologically stable region was attributed to thawing permafrost, intensified during the heat wave of 2016. We studied recent dynamics of air temperature as well as summer and winter precipitation in the region. In addition, we analysed the effect of winter precipitation and air temperature on the dynamics of active layer thickness using data from Circumpolar Active Layer Monitoring sites [2]. Our analysis suggests that permafrost was thawing intensively during several years before the outbreak, when snowy cold winters followed warmer winters. Thick snow prevented soil from freezing and enhanced permafrost thawing. In addition, we showed that summer precipitation drastically decreased in the region of outbreak during recent years, likely contributing to the spread of disease.  </p><p>[1] Popova, A.Yu. et al. Outbreak of Anthrax in the Yamalo-Nenets Autonomous District in 2016, Epidemiological Peculiarities. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. <strong>4</strong>, 42–46 (2016).</p><p>[2] Circumpolar Active Layer Monitoring site: https://www2.gwu.edu/~calm/ [2/08/2019].</p>


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Alexey Desyatkin ◽  
Pavel Fedorov ◽  
Nikolay Filippov ◽  
Roman Desyatkin

Analysis of climatic conditions for the period of instrumental measurement in Central Yakutia showed three periods with two different mean annual air temperature (MAAT) shifts. These periods were divided into 1930–1987 (base period A), 1988–2006 (period B) and 2007–2018 (period C) timelines. The MAAT during these three periods amounted −10.3, −8.6 and −7.4 °C, respectively. Measurement of active layer depth (ALD) of permafrost pale soil under the forest (natural) and arable land (anthropogenic) were carried out during 1990–2018 period. MAAT change for this period affected an early transition of negative temperatures to positive and a later establishment of negative temperatures. Additionally, a shortening of the winter season and an extension of the duration of days with positive temperatures was found. Since the permafrost has a significant impact on soil moisture and thermal regimes, the deepening of ALD plays a negative role for studied soils. An increase in the ALD can cause thawing of underground ice and lead to degradation of the ice-rich permafrost. This thaw process causes a change of the ecological balance and leads to the destruction of natural landscapes, sometimes with a complete or prolonged loss of their biological productivity. During this observation (1990–2018 period) the active layer of permafrost is characterized by high dynamics, depending on climatic parameters such as air temperature, as well as thickness and duration of snow cover. A significant increase in ALD of forest permafrost soils—by 80 cm and 65 cm—on arable land was measured during the observation period (28 years).


2021 ◽  
Author(s):  
Alexander Orkhonselenge ◽  
Dashtseren Gerelsaikhan ◽  
Tuyagerel Davaagatan

<p>Lakes play a valuable role in the surface water resources of Mongolia. Understanding surface water dynamics and climate change over various spatiotemporal scales from local to regional are essential in Mongolia today. This study presents how lakes in the Mongolian Altai, Khuvsgul, and Khentii Mountain Ranges at high latitudes in northern Mongolia responded to the climate change during the past 50 years. The temporal trend shows that the lakes had extended in the area during the first three decades but reduced during the last two decades. However, Lakes Khoton and Khurgan in the Mongolian Altai and Lake Khangal in the Khentii increased in the area during 1970–2000 and since 2010, but decreased from 2000 to 2010. Lake Tolbo in the Mongolian Altai dropped in the area during 1970–2000, and continuously increased since 2000. Whereas Lakes Erkhel and Khargal in the Khuvsgul and Lake Gurem in the Khentii extended in 1970–2000 but reduced during 2000–2020. The spatial trend in lake area changes shows similar patterns for glacial lakes at an elevation above 2000 m a.s.l. in the Mongolian Altai and for tectonic and fluvial lakes at an elevation below 1500 m a.s.l. in the Khuvsgul and Khentii. Anomalies of seasonal variations in air temperature and precipitation in the lake basins show that the Lake Khangal basin in the Khentii is warmer and wetter than other lake basins. Moreover, the Lake Khargal basin in the Khuvsgul is cooler in winter and autumn but warmer in spring and summer compared to the basins. Whereas Lakes Tolbo, Khoton, and Khurgan basins in the Mongolian Altai are drier than others. The correlation analysis shows that hydrological dynamics of Lake Khargal in the Khuvsgul are strongly dependent on summer precipitation (r = 0.71), and autumn (r = 0.67) and summer (r = 0.47) air temperatures. However, the linear regression shows that the lake area is moderately related to the summer precipitation (R<sup>2</sup> = 0.5318) and the autumn air temperature (R<sup>2</sup> = 0.4555). Overall, the lakes in northern Mongolia show the distinct responses of hydrological dynamics to the changing climate depending on their physiographic conditions.</p>


1960 ◽  
Vol 3 (27) ◽  
pp. 558-567 ◽  
Author(s):  
Marvin Diamond

AbstractMean annual air temperatures and precipitation on the Greenland Ice Sheet, as estimated from snow profile studies and long-term meteorological records at coastal stations, have been used to prepare mean annual air temperature and mean annual precipitation charts for the Greenland Ice Sheet. It is shown that melting of surface snow may occur at elevations of about 1,300 m. in north Greenland and up to 2,700 m. in south Greenland. The warming trend in the Arctic, as indicated by increases in mean annual air temperature, may have occurred to a lesser extent on the ice sheet than at sea-level coastal stations. Annual accumulation of precipitation is two or three times as great at 2,700 m. on the west side of the ice sheet as at the crest. South of lat. 66° N., precipitation may be about twice as great on the east side of the crest as on the west side.


2012 ◽  
Vol 6 (4) ◽  
pp. 2537-2574 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of permafrost active layer thickness (ALT) during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while ALT in North American watersheds showed decreases. An opposition of ALT variations implicated with climate and hydrological variables was most significant when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher Annual Thawing Index in the Mackenzie and Yukon Basins was offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing Annual Thawing Index together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. While it is widely believed that ALT will increase with global warming, this hypothesis may need modification because the ALT also shows responses to variations in snow depth and soil moisture that can over-ride the effect of air temperature. The dependence of the hydrological variables driven by the atmosphere further increases the uncertainty in future changes of the permafrost active layer.


2020 ◽  
Vol 4 ◽  
pp. 54-67
Author(s):  
G.V. Alekseev ◽  
◽  
A.E. Vyazilova ◽  
N.E. Kharlanenkova ◽  
◽  
...  

It was previously shown that atmospheric and oceanic transports of heat and moisture play an important role in the development of Arctic warming, and sea surface temperature anomalies at low latitudes have a significant effect on the formation of these transports. Atmospheric circulation, transferring heat, moisture and precipitation, also affects the climatic conditions in the catchment areas of 3 main Siberian rivers Ob, Yenisei and Lena with runoff that it about half of the average annual inflow of river waters into the Arctic Ocean. According to the reanalyses and data arrays for the period 1979-2019 air temperature and precipitation in the catchment areas of Ob, Lena and Yenisei are rising. The greatest increase in precipitation was noted in the spring months. The spring months (March and April) also have a maximum positive air temperature trend. To assess the effect of low latitudes on changes in climatic conditions in the catchment areas reanalysis data ERA5, HadISST, precipitation gridded data of the GPCC project were used. The indexes of zonal, meridional and general circulation were calculated based on the mean monthly surface air temperature at the nodes of the geographic grid in the Northern Hemisphere. To determine the connections between the indexes and climatic parameters the methods of multivariate cross-correlation analysis were used. It was defined that zonal atmospheric transports have a significant impact on climatic conditions most of all in the cold part of the year, especially in November and March. In summer amplification of zonal circulation is accompanied by a decrease in air temperature in the catchment areas, but meridional transports enhance the air temperature. The greatest influence of meridional transport was observed in spring and summer. The climatic change in low latitudes has the greatest impact in autumn on meridional transport in spring and on zonal transport in the cold part of the year, especially in March, with time lag of 2 years. The influence of low latitudes on the climatic conditions in the catchment areas is presented in the form of correlation graphs between climatic parameters and indexes of circulation on the generalizing diagram.


2001 ◽  
Vol 21 (2Supplement) ◽  
pp. 61-62
Author(s):  
Ichiro FUJITA ◽  
Shiro AYA ◽  
Masahiro TAMAI ◽  
Kohsei TAKEHARA ◽  
Hitoshi MIYAMOTO ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 319
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Climatic conditions represent one of the main constraints that influence avian calling behavior. Here, we monitored the daily calling activity of the Undulated Tinamou (Crypturellus undulatus) and the Chaco Chachalaca (Ortalis canicollis) during the dry and wet seasons in the Brazilian Pantanal. We aimed to assess the effects of climate predictors on the vocal activity of these focal species and evaluate whether these effects may vary among seasons. Air temperature was positively associated with the daily calling activity of both species during the dry season. However, the vocal activity of both species was unrelated to air temperature during the wet season, when higher temperatures occur. Daily rainfall was positively related to the daily calling activity of both species during the dry season, when rainfall events are scarce and seem to act as a trigger for breeding phenology of the focal species. Nonetheless, air temperature was negatively associated with the daily calling activity of the Undulated Tinamou during the wet season, when rainfall was abundant. This study improves our understanding of the vocal behavior of tropical birds and their relationships with climate, but further research is needed to elucidate the mechanisms behind the associations found in our study.


Sign in / Sign up

Export Citation Format

Share Document