The link between precipitation and recent outbreak of anthrax in North-West Siberia

Author(s):  
Ekaterina Ezhova ◽  
Dmitry Orlov ◽  
Elli Suhonen ◽  
Dmitry Kaverin ◽  
Alexander Mahura ◽  
...  

<p>Anthrax is a bacterial disease affecting mainly livestock but also posing a risk for humans. During the outbreak of anthrax on Yamal peninsula in 2016, 36 humans were infected and more than 2.5 thousand reindeer died or were killed to prevent further contamination [1]. Anthrax is a natural focal disease, which means that its agents depend on climatic conditions. The revival of bacteria in previously epidemiologically stable region was attributed to thawing permafrost, intensified during the heat wave of 2016. We studied recent dynamics of air temperature as well as summer and winter precipitation in the region. In addition, we analysed the effect of winter precipitation and air temperature on the dynamics of active layer thickness using data from Circumpolar Active Layer Monitoring sites [2]. Our analysis suggests that permafrost was thawing intensively during several years before the outbreak, when snowy cold winters followed warmer winters. Thick snow prevented soil from freezing and enhanced permafrost thawing. In addition, we showed that summer precipitation drastically decreased in the region of outbreak during recent years, likely contributing to the spread of disease.  </p><p>[1] Popova, A.Yu. et al. Outbreak of Anthrax in the Yamalo-Nenets Autonomous District in 2016, Epidemiological Peculiarities. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. <strong>4</strong>, 42–46 (2016).</p><p>[2] Circumpolar Active Layer Monitoring site: https://www2.gwu.edu/~calm/ [2/08/2019].</p>

2019 ◽  
Vol 9 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Filip Hrbáček ◽  
Daniel Nývlt ◽  
Kamil Láska ◽  
Michaela Kňažková ◽  
Barbora Kampová ◽  
...  

This study summarizes the current state of the active layer and permafrost research on James Ross Island. The analysis of climate parameters covers the reference period 2011–2017. The mean annual air temperature at the AWS-JGM site was -6.9°C (ranged from -3.9°C to -8.2°C). The mean annual ground temperature at the depth of 5 cm was -5.5°C (ranged from -3.3°C to -6.7°C) and it also reached -5.6°C (ranged from -4.0 to -6.8°C) at the depth of 50 cm. The mean daily ground temperature at the depth of 5 cm correlated moderately up to strongly with the air temperature depending on the season of the year. Analysis of the snow effect on the ground thermal regime confirmed a low insulating effect of snow cover when snow thickness reached up to 50 cm. A thicker snow accumulation, reaching at least 70 cm, can develop around the hyaloclastite breccia boulders where a well pronounced insulation effect on the near-surface ground thermal regime was observed. The effect of lithology on the ground physical properties and the active layer thickness was also investigated. Laboratory analysis of ground thermal properties showed variation in thermal conductivity (0.3 to 0.9 W m-1 K-1). The thickest active layer (89 cm) was observed on the Berry Hill slopes site, where the lowest thawing degree days index (321 to 382°C·day) and the highest value of thermal conductivity (0.9 W m-1 K-1) was observed. The clearest influence of lithological conditions on active layer thickness was observed on the CALM-S grid. The site comprises a sandy Holocene marine terrace and muddy sand of the Whisky Bay Formation. Surveying using a manual probe, ground penetrating radar, and an electromagnetic conductivity meter clearly showed the effect of the lithological boundary on local variability of the active layer thickness.


2021 ◽  
Author(s):  
Didac Pascual Descarrega ◽  
Margareta Johansson

<p>Winter warming events (WWE) in the Swedish subarctic are abrupt and short-lasting (hours-to-days) events of positive air temperature that occur during wintertime, sometimes accompanied by rainfall (rain on snow; ROS). These events cause changes in snow properties, which affect the below-ground thermal regime that, in turn, controls a suite of ecosystem processes ranging from microbial activity to permafrost and vegetation dynamics. For instance, winter melting can cause ground warming due to the shortening of the snow cover season, or ground cooling as the reduced snow depth and the formation of refrozen layers of high thermal conductivity at the base of the snowpack facilitate the release of soil heat. Apart from these interacting processes, the overall impacts of WWE on ground temperatures may also depend on the timing of the events and the preceding snowpack characteristics. The frequency and intensity of these events in the Arctic, including the Swedish subarctic, has increased remarkably during the recent decades, and is expected to increase even further during the 21st Century. In addition, snow depth (not necessarily snow duration) is projected to increase in many parts of the Arctic, including the Swedish subarctic. In 2005, a manipulation experiment was set up on a lowland permafrost mire in the Swedish subarctic, to simulate projected future increases in winter precipitation. In this study, we analyse this 15-year record of ground temperature, active layer thickness, and meteorological variables, to evaluate the short- (days to weeks) and long-term (up to 1 year) impacts of WWE on the thermal dynamics of lowland permafrost, and provide new insights into the influence of the timing of WWE and the underlying snowpack conditions on the thermal response of permafrost. On the short-term, the thermal responses to WWE are faster and stronger in areas with a shallow snowpack (5-10 cm), although these responses are more persistent in areas with a thicker snowpack (>25 cm), especially after ROS events. On the long term, permafrost in areas with a thicker snowpack exhibit a more durable warming response to WWE that results in thicker active layers at the end of the season. On the contrary, we do not observe a correlation between WWE and end of season active layer thickness in areas with a shallow snowpack. </p>


2019 ◽  
Vol 11 (16) ◽  
pp. 1865 ◽  
Author(s):  
Annett Bartsch ◽  
Marina Leibman ◽  
Tazio Strozzi ◽  
Artem Khomutov ◽  
Barbara Widhalm ◽  
...  

Ground subsidence monitoring by Synthetic Aperture Radar interferometry (InSAR) over Arctic permafrost areas is largely limited by long revisit intervals, which can lead to signal decorrelation. Recent satellite missions such as COSMO-Skymed (X-band) and Sentinel-1 (C-band) have comparably short time intervals of a few days. We analyze dense records of COSMO-Skymed from 2013 and 2016 and of Sentinel-1 from 2016, 2017, and 2018 for the unfrozen period over central Yamal (Russia). These years were distinct in environmental conditions and 2016 in particular was unusually warm. We evaluate the InSAR-derived displacement with in situ subsidence records, active-layer thickness measurements, borehole temperature records, meteorological data, C-band scatterometer records, and a land-cover classification based on Sentinel-1 and -2 data. Our results indicate that a comparison of seasonal thaw evolution between years is feasible after accounting for the early thaw data gap in InSAR time series (as a result of snow cover) through an assessment with respect to degree-days of thawing. Average rates of subsidence agree between in situ and Sentinel-1 (corrected for viewing geometry), with 3.9 mm and 4.3 mm per 100 degree-days of thaw at the test site. X-band and C-band records agree well with each other, including seasonal evolution of subsidence. The average displacement is more than twice in magnitude at the active-layer monitoring test site in 2016 compared to the other years. We further demonstrate that InSAR displacement can not only provide information on the magnitude of ground thaw but also on soil properties through analyses of seasonal evolution in extreme years.


Author(s):  
Zhaohui Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

AbstractAlaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to impact soil layers beneath through the harmonic fluctuation of the active layer, and warmer air temperature can result in progressive permafrost thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a permafrost environment in Northern Alaska. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings for the last quarter-century. It is found that the active layer thickness increases, with the amount depending on climate model predictions and ground surface conditions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that thaw strain is most significant in the near-surface layers, indicating that settlement would be concurrent with annual thaw penetration. Moreover, ice content is a major factor in the settlement prediction. This assessment methodology, after improvement, and the results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 462
Author(s):  
Alyona A. Shestakova ◽  
Alexander N. Fedorov ◽  
Yaroslav I. Torgovkin ◽  
Pavel Y. Konstantinov ◽  
Nikolay F. Vasyliev ◽  
...  

The purpose of this article was to compile four separate digital thematic maps of temperature and ice content of permafrost, the active layer thickness, and cryogenic processes in Yakutia as a basis for assessing changes to modern climate changes and anthropogenic disturbances. In this work, materials on permafrost were used, serving as the basis for compiling a permafrost landscape map of the Republic of Sakha (Yakutia). The maps were compiled using ArcGIS software, which supports attribute table mapping. The ground temperature and active layer thickness maps reflected landscape zonality and regional differences. Peculiarities of genetic types of Quaternary deposits and climatic conditions reflected the ice content of surface sediments and cryogenic process distribution maps. One of the most common is ground temperatures from −2.1 to −4.0 °C, which were found to occupy about 37.4% of the territory of Yakutia. More than half of the region was found to be occupied by permafrost landscapes with a limited thickness of the active layer up to 1.1 m. Ice-rich permafrost (more than 0.4 in ice content) was found to be typical for about 40% of the territory. Thermokarst is the most hazardous process that occurs in half of Yakutia.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Alexey Desyatkin ◽  
Pavel Fedorov ◽  
Nikolay Filippov ◽  
Roman Desyatkin

Analysis of climatic conditions for the period of instrumental measurement in Central Yakutia showed three periods with two different mean annual air temperature (MAAT) shifts. These periods were divided into 1930–1987 (base period A), 1988–2006 (period B) and 2007–2018 (period C) timelines. The MAAT during these three periods amounted −10.3, −8.6 and −7.4 °C, respectively. Measurement of active layer depth (ALD) of permafrost pale soil under the forest (natural) and arable land (anthropogenic) were carried out during 1990–2018 period. MAAT change for this period affected an early transition of negative temperatures to positive and a later establishment of negative temperatures. Additionally, a shortening of the winter season and an extension of the duration of days with positive temperatures was found. Since the permafrost has a significant impact on soil moisture and thermal regimes, the deepening of ALD plays a negative role for studied soils. An increase in the ALD can cause thawing of underground ice and lead to degradation of the ice-rich permafrost. This thaw process causes a change of the ecological balance and leads to the destruction of natural landscapes, sometimes with a complete or prolonged loss of their biological productivity. During this observation (1990–2018 period) the active layer of permafrost is characterized by high dynamics, depending on climatic parameters such as air temperature, as well as thickness and duration of snow cover. A significant increase in ALD of forest permafrost soils—by 80 cm and 65 cm—on arable land was measured during the observation period (28 years).


2021 ◽  
Author(s):  
Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

Abstract Alaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to infiltrate soil layers beneath through the harmonic fluctuation of the active layer. Past studies found that warmer air temperature resulted in increasingly deeper thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a study site on the North Slope. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings. It is found that the active layer thickens when the ground surface is either gravel fill or undisturbed tundra, but its thickness varies based on climate model predictions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that strain is most significant in the near-surface layers during thaw, indicating that settlement would be concurrent with annual thaw penetration. From this study, the climate model predicted air temperatures for a warming Arctic suggest that the thaw of near-surface frozen ground is largely dependent on ground surface conditions and the thermal properties of soil. Moreover, ice content is a major factor in the settlement predictions on Alaska’s North Slope. This study's results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


2014 ◽  
Vol 6 (2) ◽  
pp. 1423-1449 ◽  
Author(s):  
R. F. M. Michel ◽  
C. E. G. R. Schaefer ◽  
F. N. B. Simas ◽  
Francelino M. R. ◽  
E. I. Fernandes-Filho ◽  
...  

Abstract. International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008–2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1361-1374 ◽  
Author(s):  
R. F. M. Michel ◽  
C. E. G. R. Schaefer ◽  
F. M. B. Simas ◽  
M. R. Francelino ◽  
E. I. Fernandes-Filho ◽  
...  

Abstract. International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008–2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.


2021 ◽  
Vol 14 (4) ◽  
pp. 41-54 ◽  
Author(s):  
Оleg D. Tregubov ◽  
Vladimir E. Glotov ◽  
Pavel Ya. Konstantinov ◽  
Vladimir V. Shamov

The lakes of the Arctic lowlands are both the unique indicator and the result of climatic and permafrost changes. Remote sensing methods and field measurements were used to consider the patterns and features of the morphometric indicators dynamics of the Anadyr lowland lakes over 65 years. We analyzed the parameters of 36 lakes with an area of 0.02–0.3 km2 located in the bottoms of drained lake basins, in river floodplains, on sea-shore terraces. Field studies were conducted on 22 typical lakes. The considered dynamics of seasonal thawing are based on the monitoring of the active layer for 1994–2020. Due to an increase of mean annual air temperature by 1.8 °C, as well as an increase and then a decrease in the mean annual precipitation by 135 mm, the average share of a lake area in the study area decreased by 24%. It is shown for the first time that cryogenic processes of the lacustrine coastal zone affect the change in the area of lakes simultaneously with the influence of precipitation and air temperature. Based on field observations, we considered two causes of natural drainage: discharge of the lakes through newly formed thermokarst and thermoerosional surface flow channels and decrease in suprapermafrost groundwater recharge as a result of changing depth of seasonally thawed active layer in the coastal zone.


Sign in / Sign up

Export Citation Format

Share Document