scholarly journals Air Temperature and Precipitation on the Greenland Ice Sheet

1960 ◽  
Vol 3 (27) ◽  
pp. 558-567 ◽  
Author(s):  
Marvin Diamond

AbstractMean annual air temperatures and precipitation on the Greenland Ice Sheet, as estimated from snow profile studies and long-term meteorological records at coastal stations, have been used to prepare mean annual air temperature and mean annual precipitation charts for the Greenland Ice Sheet. It is shown that melting of surface snow may occur at elevations of about 1,300 m. in north Greenland and up to 2,700 m. in south Greenland. The warming trend in the Arctic, as indicated by increases in mean annual air temperature, may have occurred to a lesser extent on the ice sheet than at sea-level coastal stations. Annual accumulation of precipitation is two or three times as great at 2,700 m. on the west side of the ice sheet as at the crest. South of lat. 66° N., precipitation may be about twice as great on the east side of the crest as on the west side.

1960 ◽  
Vol 3 (27) ◽  
pp. 558-567 ◽  
Author(s):  
Marvin Diamond

AbstractMean annual air temperatures and precipitation on the Greenland Ice Sheet, as estimated from snow profile studies and long-term meteorological records at coastal stations, have been used to prepare mean annual air temperature and mean annual precipitation charts for the Greenland Ice Sheet. It is shown that melting of surface snow may occur at elevations of about 1,300 m. in north Greenland and up to 2,700 m. in south Greenland. The warming trend in the Arctic, as indicated by increases in mean annual air temperature, may have occurred to a lesser extent on the ice sheet than at sea-level coastal stations. Annual accumulation of precipitation is two or three times as great at 2,700 m. on the west side of the ice sheet as at the crest. South of lat. 66° N., precipitation may be about twice as great on the east side of the crest as on the west side.


2009 ◽  
Vol 22 (14) ◽  
pp. 4029-4049 ◽  
Author(s):  
Jason E. Box ◽  
Lei Yang ◽  
David H. Bromwich ◽  
Le-Sheng Bai

Abstract Meteorological station records and regional climate model output are combined to develop a continuous 168-yr (1840–2007) spatial reconstruction of monthly, seasonal, and annual mean Greenland ice sheet near-surface air temperatures. Independent observations are used to assess and compensate for systematic errors in the model output. Uncertainty is quantified using residual nonsystematic error. Spatial and temporal temperature variability is investigated on seasonal and annual time scales. It is found that volcanic cooling episodes are concentrated in winter and along the western ice sheet slope. Interdecadal warming trends coincide with an absence of major volcanic eruptions. Year 2003 was the only year of 1840–2007 with a warm anomaly that exceeds three standard deviations from the 1951–80 base period. The annual whole ice sheet 1919–32 warming trend is 33% greater in magnitude than the 1994–2007 warming. The recent warming was, however, stronger along western Greenland in autumn and southern Greenland in winter. Spring trends marked the 1920s warming onset, while autumn leads the 1994–2007 warming. In contrast to the 1920s warming, the 1994–2007 warming has not surpassed the Northern Hemisphere anomaly. An additional 1.0°–1.5°C of annual mean warming would be needed for Greenland to be in phase with the Northern Hemispheric pattern. Thus, it is expected that the ice sheet melt rates and mass deficit will continue to grow in the early twenty-first century as Greenland’s climate catches up with the Northern Hemisphere warming trend and the Arctic climate warms according to global climate model predictions.


2018 ◽  
Vol 48 (9) ◽  
pp. 2127-2140 ◽  
Author(s):  
Peigen Lin ◽  
Robert S. Pickart ◽  
Daniel J. Torres ◽  
Astrid Pacini

AbstractShipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


2003 ◽  
Vol 37 ◽  
pp. 351-356 ◽  
Author(s):  
Jonathan L. Bamber ◽  
Duncan J. Baldwin ◽  
S. Prasad Gogineni

AbstractA new digital elevation model of the surface of the Greenland ice sheet and surrounding rock outcrops has been produced from a comprehensive suite of satellite and airborne remote-sensing and cartographic datasets. The surface model has been regridded to a resolution of 5 km, and combined with a new ice-thickness grid derived from ice-penetrating radar data collected in the 1970s and 1990s. A further dataset, the International Bathymetric Chart of the Arctic Ocean, was used to extend the bed elevations to include the continental shelf. The new bed topography was compared with a previous version used for ice-sheet modelling. Near the margins of the ice sheet and, in particular, in the vicinity of small-scale features associated with outlet glaciers and rapid ice motion, significant differences were noted. This was highlighted by a detailed comparison of the bed topography around the northeast Greenland ice stream.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2021 ◽  
Author(s):  
Maria Hoerhold ◽  
Thomas Münch ◽  
Stefanie Weißbach ◽  
Sepp Kipfstuhl ◽  
Bo Vinther ◽  
...  

<p>Climate variability of the Arctic region has been investigated by means of temperature reconstructions based on proxies from various climate archives around the Arctic, compiled over the last 2000a in the so called Arctic2k record. However, the representativeness of the Arctic2k reconstruction for central Greenland remains unclear, since only a few ice cores have been included in the reconstruction, and observations from the Greenland Ice Sheet (GIC) report ambiguous warming trends for the end of the 20th and the beginning of the 21st century which are not displayed by Arctic2k. Today, the GIC experiences periods with temperatures close to or above the freezing point at high elevations, area-wide melting and mass loss. In order to assess the recent warming as signature of global climate change, records of past climate changes with appropriate temporal and spatial coverage can serve as a benchmark for naturally driven climate variability. Instrumental records for Greenland are short and geographically sparse, and existing temperature reconstructions from single ice cores are noisy, leading to an inconclusive assessment of the recent warming for Greenland.</p><p>Here, we provide a Greenland firn-core stack covering the time span of the last millennium until the first decade of the 21<sup>st </sup>century in unprecedented quality by re-drilling as well as analyzing 16 existing firn core sites. We find a strong decadal to bi-decadal natural variability in the record, and, while the record exhibits several warming events with trends that show a similar amplitude as the recent one, we find that the recent absolute values of stable oxygen isotope composition are unprecedented for the last 1000 years.</p><p> </p><p>Comparing our Greenland record with the Arctic 2k temperature reconstruction shows that the correlation between the two records changes throughout the last millennium. While in the periods of 1200-1300 and 1400-1650 CE the records correlate positively, between 1300 and 1400 and 1650-1700 CE shorter periods with negative correlation are found. Since then the correlation is characterized by alternation between positive and zero correlation, with a drop towards negative values at the end of the 20<sup>th</sup> century. Including re-analysis data, we hypothesize that the climate on top of the GIC was decoupled from the surrounding Arctic for the last decades, leading to the observed mismatch in observations of warming trends.</p><p>We suggest that the recently observed Greenland temperatures are a superposition of a strong natural variability with an anthropogenic long-term trend. Our findings illustrate that global warming has reached the interior of the Greenland ice sheet, which will have implications for its surface mass balance and Greenland’s future contribution to sea level rise.</p><p>Our record complements the Arctic 2k record to a profound view on the Arctic climate variability, where regional compilations may not be representative for specific areas.</p>


1990 ◽  
Vol 14 ◽  
pp. 307-310 ◽  
Author(s):  
C.R. Warren ◽  
N.R.J. Hulton

The retreat of the West Greenland ice sheet from its Sisimiut (Wisconsinan) glacial maximum, was punctuated by a series of Stillstands or small readvances that formed numerous moraines. These landforms have been interpreted in the past as the result of short-term, regional falls in ablation-season temperatures. However, mapping of the geomorphological evidence south of Ilulissat (Jakobshavn) suggests that retreat behaviour was not primarily governed by climate, and therefore that the former ice margins are not palaeoclimatically significant. During warm climate ice-sheet wastage, the successive quasi-stable positions adopted by the ice margin were largely governed by topography. The retreat of the inherently unstable calving glaciers was arrested only at topographically-determined locations where stability could be achieved.


Sign in / Sign up

Export Citation Format

Share Document