scholarly journals Retinal abnormalities in transgenic mice overexpressing aberrant human FUS[1-359] gene

Author(s):  
VO Soldatov ◽  
MS Kukharsky ◽  
MO Soldatova ◽  
OA Puchenkova ◽  
YuA Nikitina ◽  
...  

Retinal damage is an optional sign in a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The aim of this work was to assess the structural and functional state of the retina in a murine model of ALS caused by overexpression of the aberrant FUS protein [1-359]. The retinal examination was carried out on 12 transgenic and 13 wild-type mice of 2.5–3 months of age. The study revealed not statistically significant higher level of ophthalmoscopic violations in FUS[1-359] mice. Moreover, gene expression assay confirmed an increased expression of the inflammatory genes Vegfa, Il1b, Il6, Icam1, Tnfa. However, despite the detected structural and functional abnormalities, western blot analysis and quantitative PCR did not detect the expression of the protein and mRNA products of the FUS transgene in the retina of FUS[1-359] mice.

2018 ◽  
Vol 115 (32) ◽  
pp. 8209-8214 ◽  
Author(s):  
Danilo B. Medinas ◽  
Pablo Rozas ◽  
Francisca Martínez Traub ◽  
Ute Woehlbier ◽  
Robert H. Brown ◽  
...  

Abnormal modifications to mutant superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS). Misfolding of wild-type SOD1 (SOD1WT) is also observed in postmortem tissue of a subset of sporadic ALS (sALS) cases, but cellular and molecular mechanisms generating abnormal SOD1WT species are unknown. We analyzed aberrant human SOD1WT species over the lifetime of transgenic mice and found the accumulation of disulfide–cross-linked high–molecular-weight SOD1WT aggregates during aging. Subcellular fractionation of spinal cord tissue and protein overexpression in NSC-34 motoneuron-like cells revealed that endoplasmic reticulum (ER) localization favors oxidation and disulfide-dependent aggregation of SOD1WT. We established a pharmacological paradigm of chronic ER stress in vivo, which recapitulated SOD1WTaggregation in young transgenic mice. These species were soluble in nondenaturing detergents and did not react with a SOD1 conformation-specific antibody. Interestingly, SOD1WT aggregation under ER stress correlated with astrocyte activation in the spinal cord of transgenic mice. Finally, the disulfide–cross-linked SOD1WT species were also found augmented in spinal cord tissue of sALS patients, correlating with the presence of ER stress markers. Overall, this study suggests that ER stress increases the susceptibility of SOD1WT to aggregate during aging, operating as a possible risk factor for developing ALS.


2007 ◽  
Vol 1160 ◽  
pp. 1-10 ◽  
Author(s):  
Yasuyo Fukada ◽  
Kenichi Yasui ◽  
Michio Kitayama ◽  
Koji Doi ◽  
Toshiya Nakano ◽  
...  

2010 ◽  
Vol 25 (3) ◽  
pp. 281-289 ◽  
Author(s):  
Juliana Milani Scorisa ◽  
Tatiana Duobles ◽  
Gabriela Pintar de Oliveira ◽  
Jessica Ruivo Maximino ◽  
Gerson Chadi

PURPOSE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that displays a rapid evolution. Current treatments have failed to revert clinical symptoms because the mechanisms involved in the death of motoneuron are still unknown. Recent publications have put non-neuronal cells, particularly, astrocyte and microglia, in the scenario of pathophisiology of the disease. Animal models for ALS, particularly transgenic mice expressing the human SOD1 gene with a G93A mutation (hSOD1), are available and display the phenotype of the disease at cellular and clinical levels. However, it is a lack of detailed information regarding the methods to study the disease in vitro to better understand the contribution of non-neuronal cells in the onset and progression of the pathology. METHODS: Colonies of Swiss mice and transgenic mice expressing hSOD1 mutation as well as non-transgenic controls (wild-type) were amplified after a genotyping evaluation. Disease progression was followed behaviorally and mortality was registered. Highly purified primary cultures of astrocytes and microglia from mouse spinal cord were obtained. Cells were identified by means of GFAP and CD11B immunocytochemistry. The purity of astroglial and microglial cell cultures was also accompanied by means of Western blot and RT-PCR analyses employing a number of markers. RESULTS: The disease onset was about 105 days and the majority of transgenic mice displayed the disease symptoms by 125 days of age and reached the endpoint 20 days later. A substantial motor weakens was registered in the transgenic mice compared to wild-type at the end point. Immunocytochemical, biochemical and RT-PCR analyses demonstrated a highly purified primary cultures of spinal cord astrocytes and microglia. CONCLUSION: It is possible to achieve highly purified primary cultures of spinal cord astrocytes and microglia to be employed in cellular and molecular analyses of the influence of such non-neuronal cells in the pathophysiology of ALS.


1990 ◽  
Vol 7 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Arthur W. Clark ◽  
Phu M. Tran ◽  
Irma M. Parhad ◽  
Craig A. Krekoski ◽  
Jean-Pierre Julien

Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 2856-2861 ◽  
Author(s):  
Hongmin Sun ◽  
Tony L. Yang ◽  
Angela Yang ◽  
Xixi Wang ◽  
David Ginsburg

Abstract Coagulation factor V (FV) is a central regulator of the coagulation cascade. Circulating FV is found in plasma and within platelet α granules. The specific functions of these distinct FV pools are uncertain. We now report the generation of transgenic mice with FV gene expression restricted to either the liver or megakaryocyte/platelet lineage using bacterial artificial chromosome (BAC) constructs. Six of 6 independent albumin BAC transgenes rescue the neonatal lethal hemorrhage of FV deficiency. Rescued mice all exhibit liver-specific Fv expression at levels ranging from 6% to 46% of the endogenous Fv gene, with no detectable FV activity within the platelet pool. One of the 3 Pf4 BAC transgenes available for analysis also rescues the lethal FV null phenotype, with FV activity restricted to only the platelet pool (approximately 3% of the wild-type FV level). FV-null mice rescued by either the albumin or Pf4 BAC exhibit nearly normal tail bleeding times. These results demonstrate that Fv expression in either the platelet or plasma FV pool is sufficient for basal hemostasis. In addition, these findings indicate that the murine platelet and plasma FV pools are biosynthetically distinct, in contrast to a previous report demonstrating a plasma origin for platelet FV in humans.


Sign in / Sign up

Export Citation Format

Share Document