scholarly journals Antimicrobial Activity of Gardenia jasminoides Callus and Crude Leaf Extracts for some Organic Solvents against some Pathogenic Bacteria and Yeasts

2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.

2011 ◽  
Vol 60 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Svetlana A. Ermolaeva ◽  
Alexander F. Varfolomeev ◽  
Marina Yu. Chernukha ◽  
Dmitry S. Yurov ◽  
Mikhail M. Vasiliev ◽  
...  

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


2019 ◽  
Vol 11 (20) ◽  
pp. 110-115
Author(s):  
Hammad R. Humud

Non-thermal (low-temperature) plasma may act as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. In this paper an atmospheric pressure plasma needle jet device which generates a cold plasma jet is used to measure the effectiveness of plasma treatment against different pathogenic bacteria and to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma. It is found that, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, there were no survivors among the initial 1x108C.F.U (Colony Forming Unit) after a 40 seconds plasma treatment. The susceptibility of Gram-positive bacteria and the Gram-negative bacteria were species and strain specific. Staphylococcus aureus was the most resistant with 4.5 % survival of the initial 2x106C.F.U. after a 40 seconds plasma treatment. According to species, Staphylococcus aureus had a strain-dependent resistance with 39% and 99% reduction from 2x106C.F.U.of the five studied isolates, respectively, whereas, Escherichia coli had a lower resistance with 76% and 99% reduction after 40 seconds.


2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Alexis Peña ◽  
Luis Rojas ◽  
Rosa Aparicio ◽  
Libia Alarcón ◽  
José Gregorio Baptista ◽  
...  

The essential oil of the leaves of Espeletia nana Cuatrec, obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were α-pinene (38.1%), β-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), α-zingiberene (4.0%), and γhimachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923(200 μg/mL) and Enterococcus faecalis ATCC 29212 (600 μg/mL).


1988 ◽  
Vol 55 (4) ◽  
pp. 597-602 ◽  
Author(s):  
Lydia Bautista ◽  
Rohan G. Kroll

SummaryEffects of the addition of a proteinase (Neutrase 1–5S) and a peptidase (aminopeptidase DP-102) as agents for accelerating the ripening of Cheddar cheese on the survival of some non-starter bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coliand aSalmonellasp.) were studied throughout a 4-month ripening period. The enzymes were found to have no significant effect on the survival of the Gram-positive bacteria but some significant effects were observed, at some stages of the ripening period, with the Gram-negative bacteria in that lower levels were recovered from cheeses treated with the enzyme system.


2021 ◽  
Vol 12 (2) ◽  
pp. 1824-1834

Secondary metabolites from the shoots and roots of three Rumex species collected from three different habitats were investigated (Rumex dentatus collected from cultivated land, R. pictus collected from the coastal desert and R. vesicarius collected from the inland desert) and tested for antioxidant activity as well as for anti-microbial activity against some human pathogenic bacteria. The present study indicated that the quantitative analysis of shoot and root extracts of three Rumex spp. were found to be rich in tannins and phenolics composition. The aerial parts of the three plants exhibited the highest significant values compared to the root parts. The MeOH extracts of Rumex species showed adequate antioxidant activity, wherein the IC50 values of the MeOH from the cultivated sample was 41.61 and 31.31 mg mL-1, coastal samples were 34.99 and 23.99 mg mL-1, while the sample of inland showed IC50 value of 41.59 and 31.67 mg mL-1, for root and shoot, respectively. Furthermore, using a filter paper disc assay, the MeOH extracts of the three Rumex species showed a substantial anti-microbial inhibitory effect on the growth of 10 pathogenic bacteria. According to sensitivity, the tested organisms could be sequenced as following: E. coli < K. pneumoniae ˂ S. typhi < P. aeruginosa for Gram-negative bacteria and B. subtilis < S. pneumoniae ˂ L. monocytoyenes < S. epidermis < S. aureus < B. cereus for Gram-positive bacteria. In addition, the antibacterial performance of R. dentatus root and R. vesicarius shoot MeOH extract is 100% broad spectrum against Gram-negative bacteria. A shoot of R. dentatus and R. pictus MeOH extract against Gram-positive bacteria is 83.3% broad spectrum. A further study is recommended for more characterization of the major compounds and assesses their efficiency and biosafety.


2020 ◽  
Vol 12 (2) ◽  
pp. 56-63
Author(s):  
Marko Naumovski ◽  
Ivamaria Jovanovska ◽  
Kakja Popovska ◽  
Vesna Velikj Stefanovska ◽  
Gordana Mirchevska

In recent years, snakes have become suitable pets for people with little spare time. By buying these animals people ignore the fact that they carry many microorganisms that are pathogenic for humans. The idea of ​​this study was to identify the microorganisms from the oral cavity of exotic snakes kept as pets in the Republic of North Macedonia, which can help in the treatment of bite infections if they occur. The study comprised 30 snakes of 9 species, from 3 families of non-venomous snakes: Pythonidae, Boidae and Colubridae. Snakes are part of the 5 largest collections of exotic snakes in the Republic of North Macedonia. Only one swab from the oral cavity was taken from each snake. The brushes were cultured and microscopically analyzed at the Institute of Microbiology and Parasitology at the Faculty of Medicine in Skopje. From 59 isolated microorganisms from the oral cavity of 30 exotic snakes, 37.3% were Gram-positive bacteria, 61.01% were Gram-negative bacteria and 1.69% were fungi. Of the total number of microorganisms, Pseudomonas aeruginosa was predominant with 27.11%, Providencia rettgeri / Proteus vulgaris with 18.64% and KONS / Micrococcus luteus with 16.94%. Pseudomonas aeruginosa was present in all three snake families, with 62.5% of the snake in the fam. Pythonidae; 50% in the fam. Boidae and 50% in the fam. Colubridae. The isolate Providencia rettgeri / Proteus vulgaris was most frequently found in the fam. Colubridae with 71.43%, followed by fam. Pythonidae with 12.5%, but was not isolated in any specimen of the fam. Boidae. The microbiome of the non-venomous snakes is composed of Gram-positive bacteria in healthy snakes, but also in snakes kept in inadequate hygienic conditions. Gram-negative bacteria were predominant, of which the most significant was the presence of multiple drug resistance Pseudomonas aeruginosa. Snakes as pets require proper knowledge of terms and conditions.


2012 ◽  
Vol 3 ◽  
pp. 684-691 ◽  
Author(s):  
Mayuree Jaisai ◽  
Sunandan Baruah ◽  
Joydeep Dutta

Paper with antimicrobial properties was developed through in situ growth of ZnO nanorods. The targeted application for this type of paper is in health centers as wallpaper, writing paper, facemasks, tissue paper, etc. The paper was tested on three model microbes, Gram-positive bacteriaStaphylococcus aureus,Gram-negative bacteriaEscherichia coliand common airborne fungusAspergillus niger. No viable bacterial colonies or fungal spores could be detected in the areas surrounding test samples of the antimicrobial paper. Gram-negative bacteriaEscherichia coliwere found to be inhibited in an area that is 239% and 163% the area of the paper sample under different room lighting conditions, i.e., halogen and fluorescent lamp illumination, respectively. For Gram-positive bacteriaStaphylococcus aureusthe zones of inhibition surrounding the paper samples are 102% and 70%, and forAspergillus niger, 224% and 183% of the sample area, under similar lighting conditions.


2003 ◽  
Vol 07 (11) ◽  
pp. 755-760 ◽  
Author(s):  
Tatyana O. Philippova ◽  
Boris N. Galkin ◽  
Oksana Yu. Zinchenko ◽  
Maria Yu. Rusakova ◽  
Vladimir A. Ivanitsa ◽  
...  

The antimicrobial activity of new meso-tetrakis(N-methyl-6-quinolinyl)-substituted porphyrins and meso-tetrakis(N-methyl-6-quinolinyl)-substituted chlorins is described. The dark toxicity and photosensitising potentials of free-base (TQP and TQC) and its Sn(IV)-complexes [(TQP)Sn(IV) and (TQC)Sn(IV)] were tested on Gram-positive (Staphylococus aureus), Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and two species of yeasts (Candida albicans and Rhodotorula bogoriensis). The results described in this paper show that TQP and (TQP)Sn(IV) did not inhibit the growth of S. aureus in the dark, but efficiently photosensitize the inactivation of this Gram-positive bacteria. These porphyrins have no appreciable photosensitizing activity towards Gram-negative bacteria. However, (TQP)Sn(IV) shows high dark toxicity against E. coli and P. aeruginosa. The free-base derivatives demonstrated dark activity only in the case of P. aeruginosa. We suppose that these meso-tetrakis(N-methyl-6-quinolinyl)-substituted porphyrins can bind to the Gram-negative bacteria outer membrane receptors that transported vitamin B12. The meso-substituted chlorins TQC and (TQC)Sn(IV) have shown similar efficiency in the dark- and photoinactivation of S. aureus. They revealed a middle level of dark toxicity towards Gram-negative bacteria. The Sn(IV)-complex of chlorin in comparison with free base and metalloporphyrins are more effective in photoinactivation of Gram-negative bacteria. Yeasts, such as Candida albicans and Rhodotorula bogoriensis are more sensitive to photodynamic inactivation as bacterial cells. The effects of (TQP)Sn(IV) and (TQC)Sn(IV) are more expressed than effects of free bases.


PHARMACON ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 268
Author(s):  
Marcelinda N. Kotel ◽  
Defny S. Wewengkang ◽  
Herny E. I. Simbala

ABSTRACT          Sponge  Aplysina  sp. is one of  the marine biota , which  has bioactive  compounds  that can be used  as medicinal ingredients. This study aims to determine the antimicrobial  potential of the extracts and fractions  of  sponge Aplysina  sp., against  microbes tested of  Escherichia coli, Staphylococcus aureus, and  Candida albicans. Aplysina  sp., sponge was extracted  using maceration method with  ethanol solvent and fractionated using methanol, n-hexan and chloroform solvents. To test  the antimicrobial  activity carried  out by disk diffusion agar method and observations carried out 24 hours incubation period, with inhibition zones measured using a digital caliper. The results showed that samples of  Aplysina  sp.,  proved to have antimicrobial compounds  to inhibit  Gram –positive bacteria  Staphylococcus aureus, and Gram- negative bacteria  Escherichia coli, with  the highest inhibitory  zone activity, and found  in Gram –positive Staphylococcus aureus bacteria   with measurements of 7,37 mm. Keywords: Sponge Aplysina  sp, Antimicrobial, Extraction,  Fractionation. ABSTRAK           Spons  Aplysina sp  merupakan salah satu  biota laut yang memiliki senyawa bioaktif yang dapat dijadikan  sebagai bahan obat. Penelitian ini bertujuan untuk mengetahui potensi antimikroba dari  Ekstrak dan Fraksi  Spons  Aplysina sp  Terhadap Mikroba Uji  Echerichia coli, Staphylococcus aureus, dan Candida albicans. Spons Aplysina sp diekstraksi  menggunakan metode maserasi dengan pelarut etanol dan difraksinasi  menggunakan  pelarut methanol, n-hexan, dan Kloroform. Untuk pengujian aktivitas antimikroba dilakukan dengan metode  difusi agar  dan  pengamatan dilakukan  1x24  jam  masa inkubasi,  dengan zona hambat diukur menggunakan  digital caliper. Hasil penelitian menunjukkan  bahwa sampel  Spons  Aplysina sp terbukti memiliki senyawa antimikroba untuk menghambat bakteri Gram positif  Staphylococcus aureus  dan  bakteri  Gram  negatif  Echerichia coli, dengan aktivitas zona hambat  tertinggi,  terdapat  pada  bakteri  Gram  positif   Staphylococcus  aureus  dengan hasil pengukuran  7,37 mm. Kata Kunci : Spons  Aplysina sp,  Antimikroba, Ekstraksi, Fraksinasi.


2021 ◽  
Vol 52 (2) ◽  
pp. 268-275
Author(s):  
Zaid K. Kamona ◽  
Amer H. H. Alzobaay

Lemongrass (Cymbopogon citratus) plant belongs to the Gramineae family. Lemongrass leaves essential oils were extracted by Clevenger method, antibacterial, MIC and MBC were evaluated against some gram positive and gram negative bacteria. Bacillus cereus, Staphylococcus aureus, and micrococcus spp., recorded high sensitivity to essential oil with inhibition zone reached (40, 32, and 28) mm respectively. While Pseudomonas spp., Salmonella typhimurium, and Escherichia coli recorded (20, 20, and 22) mm respectively. MIC and MBC values reached (3, 6.5) % respectively for gram-positive bacteria and (25,50) % respectively for gram-negative bacteria. C.citratus leaves essential oil showed superior efficiency in reduction count of total microorganisms, coliform bacteria, psychrotrophic bacteria, Staphylococcus aureus, and molds and yeasts, as well as the elongated shelf life for 15 days of fish balls treated with (5,10) µl\gram of essential oil under refrigerated storage compared with control treatment ( no oil added) which excluded for test after 6 days of refrigerated storage because microbial load and bad quality. Fish balls samples Lg10 (treated with 10µl\g of essential oil) gained best sensorial properties of color, texture, flavor, taste and overall acceptability were recorded 9/9 at the end of storage compared with treatment Lg5 (5µl\g essential oil added)  which gained acceptable sensorial score through refrigerated storage periods.


Sign in / Sign up

Export Citation Format

Share Document