scholarly journals Selected issues of the design of electrical installation RES type on the example of a home photovoltaic plant

2018 ◽  
Vol 19 (12) ◽  
pp. 66-74
Author(s):  
Marcin Chrzan ◽  
Daniel Pietruszczak ◽  
Mirosław Wiktorowski

The paper presents issues related to renewable energy sources and their current use. Home photovoltaic installations RES and their types are discussed. It presents the benefits that a basic household can derive from it. Details of the photovoltaic system design in a monocular house are described.

2021 ◽  
Vol 19 ◽  
pp. 205-210
Author(s):  
Milan Belik ◽  

This project focuses on optimisation of energy accumulation for various types of distributed renewable energy sources. The main goal is to prepare charging – discharging strategy depending on actual power consumption and prediction of consumption and production of utilised renewable energy sources for future period. The simulation is based on real long term data measured on photovoltaic system, wind power station and meteo station between 2004 – 2021. The data from meteo station serve as the input for the simulation and prediction of the future production while the data from PV system and wind turbine are used either as actual production or as a verification of the predicted values. Various parameters are used for trimming of the optimisation process. Influence of the charging strategy, discharging strategy, values and shape of the demand from the grid and prices is described on typical examples of the simulations. The main goal is to prepare and verify the system in real conditions with real load chart and real consumption defined by the model building with integrated renewable energy sources. The system can be later used in general installations on commercial or residential buildings.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 182 ◽  
Author(s):  
Lukas Kriechbaum ◽  
Thomas Kienberger

In developed countries like Austria the renewable energy potential might outpace the demand. This requires primary energy efficiency measures as well as an energy system design that enables the integration of variable renewable energy sources. Municipal energy systems, which supply customers with heat and electricity, will play an important role in this task. The cumulative exergy consumption methodology considers resource consumption from the raw material to the final product. It includes the exergetic expenses for imported energy as well as for building the energy infrastructure. In this paper, we determine the exergy optimal energy system design of an exemplary municipal energy system by using cumulative exergy consumption minimisation. The results of a case study show that well a linked electricity and heat system using heat pumps, combined heat power plants and battery and thermal storages is necessary. This enables an efficient supply and also provides the necessary flexibilities for integrating variable renewable energy sources.


2015 ◽  
Vol 5 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Petr Wolf

It is well known that the utilization of renewable energy sources is inevitable for a sustainable future. Besides the fact that other energy sources such as coal, gas or nuclear power have limited reserves the proper use of increasingly higher shares of renewable energy sources may lower negative impacts of traditional energy sources on the ecosystems. This is especially important in naturally protected areas located in remote Earth locations. Such areas are still almost untouched by mankind, e.g. Antarctica. The research activities in the area of renewable energy sources have increased rapidly within the last few decades. It is of a global interest to carry out the research in an ecologically sensitive way, i.e. balance the outputs and the effects of infrastructure on environment. In this paper, a project of installation of a photovoltaic system on the Czech Antarctic Station (Johann Gregor Mendel) on the James Ross Island is described and the first experience from the system run is reported. The contribution of this system to the overall energy production on this station shortly after commissioning of the system is presented as well. In discussion, a possible future development of the system is suggested.


2019 ◽  
pp. 54-60
Author(s):  
Kachan Yuriy ◽  
Kuznetsov Vitaliy

Purpose. Describe the tools used by the authors for experimental research on the possibilities of using renewable energy sources in the power supply systems of non-traction consumers of railway transport. The methodology of research is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. To date, there is no comprehensive approach and specific reasonable measures for the introduction of re-newable energy sources in the energy supply of non-traction consumers. The article presents examples of the introduction of renewable energy sources in the power supply systems of railways abroad. It is noted that when using different renewable energy sources in the power supply systems of non-traction consumers, it is necessary to have a volume of statistical information to determine their technical and economic indicators. The classification of wind power plants with a horizontal axis is given. The schematic diagram and general view of the developed experimental wind power plant are given. The schematic diagram and general view of the developed experimental photovoltaic plant are given. The equipment used for research of wind flow and intensity of solar radiation in places of possible location of wind power or photovoltaic installations is considered. The presented experimental wind power and photovoltaic plants, which serve for a comprehensive study of the possibilities of using wind and solar sources in the power supply systems of non-traction consumers, are generalized and allow to clarify the necessary data for decision making. The originality is the introduction of renewable energy sources in the power supply system of non-traction consumers of railway transport. Practical implications. The use of additional renewable energy sources to supply non-traction consumers minimizes electricity consumption. Keywords: renewable energy sources, quality of electric energy, wind power plant, photovoltaic plant, power supply networks of railway transport, traction and non-traction consumers, electricity production


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4590
Author(s):  
Christoph Wenge ◽  
Robert Pietracho ◽  
Stephan Balischewski ◽  
Bartlomiej Arendarski ◽  
Pio Lombardi ◽  
...  

The number of large energy storage units installed in the power system has increased over the last few years. This fact remains closely linked to the increase in the share of renewable energy in electricity generation. This is necessary to maintain the stability of the grid, which is becoming increasingly difficult to maintain due to the growing number of renewable energy sources (RES). Energy production from these sources is difficult to estimate, and possible unplanned shortages and surpluses in production are the cause of voltage and frequency fluctuations, which is an undesirable state. Consequently, the use of energy storage not only contributes to the regulation of grid operation but can also, under appropriate conditions, constitute an additional load if too much energy is generated by RES, or the source when the generation from RES is insufficient. The main contributions of this paper are as follows: A presentation of practical results achieved by implementing two optimal control strategies for a 1 MW (0.5 MWh) battery energy storage (BES) cooperating with a large 144 MW photovoltaic farm. In the first case, the BES was used to generate curtailment at photovoltaic farm to avoid power grid overload. The second case focuses on maximizing profits from selling the energy produced in periods when the unit price for energy was the highest according to energy market forecasts. In both cases, the storage was used simultaneously to cover the producer’s own demand, which eliminated the costs associated with the purchase of energy from the operator, especially during the night supply. A technical and economic evaluation was prepared for both cases, considering the real profits from the investment. The potential of using the BES to increase the functionality of photovoltaic energy sources was determined and discussed in the paper.


2012 ◽  
Vol 3 (4) ◽  
pp. 2174-2187 ◽  
Author(s):  
Y. Jaganmohan Reddy ◽  
Y. V. Pavan Kumar ◽  
K. Padma Raju ◽  
Anilkumar Ramsesh

2013 ◽  
Vol 361-363 ◽  
pp. 382-385
Author(s):  
Marek Kušnír ◽  
Danica Košičanová ◽  
František Vranay

Nowadays, choosing of heating source is emphasized. On the market there are different types of heat sources, which need to be properly designed to the required heating output. Finally, it is necessary to take into account the possibilities of fuel burning as well as heat transfer substance. Heating system is dependent on regional weather conditions, where the building is located. All these factors ultimately, with proper design of the heat source, could reduce operating costs in the heating season. Currently in the design of the heating system, there are taken into account the greatest possible energy savings. It is therefore to encourage bigger utilization of renewable energy sources.Currently has the highest proportion of total energy consumption in the buildings, energy for heating. For this reason, the expert and research community seeks to reduce energy consumption at the lowest possible value. For this purpose, people are starting to apply renewable energy sources. These devices using renewable energy sources convert energy from the environment. Most of them are transforming energy from the sun, earth, water and air. This energy is then used directly for heating. In this article we will more closely deal with transforming solar energy into electricity using photovoltaic panels and we will focus on the interaction between the photovoltaic system and heating and cooling system, under certain conditions. Produced electric energy is used for heating system in the school building in Spišská Nová Ves in Slovakia.


Author(s):  
Fatima Sapundzhi

The interest in the renewable energy sources is increasing due to the depletion of the conventional energy sources and the environmental pollution. In this paper we present a computer simulation and investigations of the roof mounted photovoltaic system. The results of the generated power of the 5kW built-in photovoltaic system by months over a period of 5 years are presented. Depending on the meteorological conditions, the investigated photovoltaic system generates year-round energy necessary for the needs of the household


Sign in / Sign up

Export Citation Format

Share Document