Effect of Culture Technique of Ganoderma Australe Mycelia on Percentage Removal of Leachate Organics

2016 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Wan Razarinah Wan Abdul Razak ◽  
Noor Zalina Mahmood ◽  
Noorlidah Abdullah

Leachate (liquid pollutant), which is highly contaminated with organic matter and toxic substances is a major problem that arised from landfill. Biological methods have proven to be effective to remove organic matters that are abundant in leachate. This study is intended to compare the used of free mycelia and immobilized mycelia of the white-rot fungi, Ganoderma australe for the  removal of landfill leachate organics. The organics fraction of landfill leachate was measured by biological oxygen demand (BOD5), and chemical oxygen demand (COD). The experiment revealed that free mycelia of G. australe showed capability in removing leachate BOD5  but not COD. However, the use of immobilized G. australe displayed the best result in the removal of BOD5 and COD leachate after 4 weeks of treatment in flasks with 93.09% and 17.84% percentage removal of BOD5 and COD, respectively. Therefore, G. australe can be considered potentially useful in the treatment of landfill leachate as they can help in removing BOD and COD due to their biodegradative abilities.

2016 ◽  
Vol 13 (1) ◽  
pp. 131 ◽  
Author(s):  
Wan Razarinah Wan Abdul Razak ◽  
Noor Zalina Mahmood ◽  
Noorlidah Abdullah

Leachate (liquid pollutant), which is highly contaminated with organic matter and toxic substances is a major problem that arised from landfill. Biological methods have proven to be effective to remove organic matters that are abundant in leachate. This study is intended to compare the used of free mycelia and immobilized mycelia of the white-rot fungi, Ganoderma australe for the  removal of landfill leachate organics. The organics fraction of landfill leachate was measured by biological oxygen demand (BOD5), and chemical oxygen demand (COD). The experiment revealed that free mycelia of G. australe showed capability in removing leachate BOD5  but not COD. However, the use of immobilized G. australe displayed the best result in the removal of BOD5 and COD leachate after 4 weeks of treatment in flasks with 93.09% and 17.84% percentage removal of BOD5 and COD, respectively. Therefore, G. australe can be considered potentially useful in the treatment of landfill leachate as they can help in removing BOD and COD due to their biodegradative abilities.


2000 ◽  
Vol 2000 ◽  
pp. 59-59
Author(s):  
Y Rouzbehan ◽  
H. Fazaeli ◽  
A. Kiani

In Iran, wheat straw which is produced in huge amounts has been used in animal feed. However, the use of straw as animal feed is limited by its low nutritional value and its low nitrogen content. Various chemical delignification methods to improve the digestibility of straw have extensively investigated (Sundstol and Owen, 1984). Biological methods of treating straw using fungi such as white-rot-fungi have also been reported (Zadrazil, 1984). The solid state fermentation (SSF) of wheat straw with white-rot fungi is a complex process which is influenced by factors such as the species of fungus, substrate, temperature and moisture (Zadrazil, 1984). The objective of this study was to investigate the effect of pre-treating the straw with urea and incubation with two species of Pleurotus fungi on the chemical composition and digestibility of wheat straw.


Author(s):  
Amin Mojiri ◽  
John L. Zhou ◽  
Harsha Ratnaweera ◽  
Akiyoshi Ohashi ◽  
Noriatsu Ozaki ◽  
...  

Abstract Landfill leachate is characterised by high chemical and biological oxygen demand and generally consists of undesirable substances such as organic and inorganic contaminants. Landfill leachate may differ depending on the content and age of landfill contents, the degradation procedure, climate and hydrological conditions. We aimed to explain the characteristics of landfill leachate and define the practicality of using different techniques for treating landfill leachate. Different treatments comprising biological methods (e.g. bioreactors, bioremediation and phytoremediation) and physicochemical approaches (e.g. advanced oxidation processes, adsorption, coagulation/flocculation and membrane filtration) were investigated in this study. Membrane bioreactors and integrated biological techniques, including integrated anaerobic ammonium oxidation and nitrification/denitrification processes, have demonstrated high performance in ammonia and nitrogen elimination, with a removal effectiveness of more than 90%. Moreover, improved elimination efficiency for suspended solids and turbidity has been achieved by coagulation/flocculation techniques. In addition, improved elimination of metals can be attained by combining different treatment techniques, with a removal effectiveness of 40–100%. Furthermore, combined treatment techniques for treating landfill leachate, owing to its high chemical oxygen demand and concentrations of ammonia and low biodegradability, have been reported with good performance. However, further study is necessary to enhance treatment methods to achieve maximum removal efficiency.


2013 ◽  
Vol 726-731 ◽  
pp. 2526-2529
Author(s):  
Na Li ◽  
Mei Hong Niu ◽  
Qing Wei Ping ◽  
Jian Zhang ◽  
Hai Qiang Shi

In this paper, the poplar Alkaline Peroxide Mechanical Pulp (APMP) pulping wastewater was treated by the SBR. The pulping wastewater was from the processes of washing, soaking and defibrination. The COD of the pulping wastewater was 5671 mg/L and the BOD was 1862 mg/L. The B/C (biological oxygen demand/chemical oxygen demand) ratio of the pulping wastewater was 0.32, which indicated that the wastewater was suitable to be treated by biological methods. SBR technology was used to treat the pulping wastewater. After a series of experiments, the best conditions for the pulping wastewater was achieved as follows: time 6hrs, original pH about 8. Under these conditions the removal ratio of COD can reach 81.4% and that of BOD can reach 91.5%;but the removal ratio of the TSS and the Chromaticity were low, the removal ratio of TSS only reach 31.8%.


2007 ◽  
Vol 56 (2) ◽  
pp. 179-186 ◽  
Author(s):  
P.J. Strong ◽  
J.E. Burgess

The aim of this work was to ascertain whether a submerged culture of a white rot fungus could be used to treat distillery wastewater, and whether the compounds present in the wastewater would stimulate laccase production. Trametes pubescens MB 89, Ceriporiopsissubvermispora, Pycnoporus cinnabarinus and UD4 were screened for their ability for the bioremediation of a raw, untreated distillery wastewater as well as distillery wastewater that had been pretreated by polyvinylpolypyrrolidone. Suitability of each strain was measured as a function of decreasing the chemical oxygen demand (COD) and total phenolic compounds concentration and the colour of the wastewater, while simultaneously producing laccase in high titres. After screening, T. pubescens MB 89 was used further in flask cultures and attained 79±1.1% COD removal, 80±4.6% total phenols removal, 71±1.6% decrease in colour at an absorbance of 500 nm and increased the pH from 5.3 to near-neutral. Laccase activity in flask cultures peaked at 4,644±228 units/l, while the activity in a 50 l bubble lift reactor peaked at 12,966±71 units/l. Trametes pubescens MB 89 greatly improved the quality of a wastewater known for toxicity towards biological treatment systems, while simultaneously producing an industrially relevant enzyme.


2010 ◽  
Vol 62 (6) ◽  
pp. 1240-1247 ◽  
Author(s):  
Jenjira Saetang ◽  
Sandhya Babel

This paper investigated treatment of landfill leachate collected from Nonthaburi landfill site, Thailand, by using immobilized white rot fungi, namely, Trametes versicolor BCC 8725 and Flavodon flavus BCC 17421. Effects of pH and co-substrates were investigated at different contact times. Three types of co-substrates as carbon source used in this study are glucose, corn starch and cassava. Treatment efficiency was evaluated based on color, BOD, and COD removal. Initial BOD and COD were found to be 5,600 and 34,560 mg/L, respectively. The optimum pH was found to be 4, the optimum co-substrate concentration (glucose, corn starch and cassava) was 3 g/L and the optimum contact time was 10 days for both types of fungi. Addition of glucose, corn starch and cassava as co-substrate at optimum conditions could remove 78, 74, and 66% of color, respectively for T. versicolor and 73, 68, and 60%, respectively, for F. flavus. Moreover, for T. versicolor, BOD and COD reduction of 69 and 57%, respectively, could be achieved at optimum conditions when using glucose as a co-substrate. For F. flavus, BOD and COD reduction of 66 and 52%, respectively were obtained when using glucose as a co-substrate. White rot fungi can be considered potentially useful in the treatment of landfill leachate as they can help in removing color, BOD and COD due to their biodegradative abilities.


2014 ◽  
Vol 68 (6) ◽  
Author(s):  
Dao-Bin Zhang ◽  
Xiao-Gang Wu ◽  
Yi-Si Wang ◽  
Hui Zhang

AbstractA study was conducted on the treatment of landfill leachate by combining the sequencing batch biofilm reactor (SBBR) method with the electro-Fenton method. The reduction of chemical oxygen demand (COD), biological oxygen demand (BOD5), and ammonia nitrogen (NH4+-N) from the leachate by the SBBR method was investigated. For the electro-Fenton experiment, the changes in COD and total organic carbon (TOC) with the increase in H2O2 dosage and electrolysis time under optimal conditions were also analysed. The results showed that the average efficiencies of reduction of COD, BOD5, and NH4+ -N achieved using the SBBR method were 21.6 %, 54.7 %, and 56.1 %, respectively. The bio-effluent was degraded by the subsequent electro-Fenton process, which was rapid over the first 30 min then subsequently slowed. After 60 min of the electro-Fenton treatment, the efficiencies of reduction of TOC, COD, and BOD5 were 40.5 %, 71.6 %, and 61.0 %, respectively. There is a good correlation between the absorbance of leachate at 254 nm (UV254) and COD or TOC during the electro-Fenton treatment.


Omni-Akuatika ◽  
2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Ratna Stia Dewi ◽  
Rina Sri Kasiamdari ◽  
Erni Martani ◽  
Yekti Asih Purwestri

Effluent from the local batik home industry is a serious problem, because the effluent discharge generated is spread in different places. Untreated effluent can cause environmental pollution, such as in groundwater reservoirs,because most is discharged into rivers. The aim of this research was to evaluate the bioremediation potential of indigenous fungi in liquid culture media with Indigosol Blue 04B (IB) batik effluent. The fungi isolates tested were Aspergillus sp. 1, Aspergillus sp. 2 and Aspergillus sp. 3, isolated from dye effluent soil and batik effluent, and compared to white rot fungi (Phanerochaete chrysosporium) as a positive control.   The physiochemical properties of IB batik effluent before and after fungal treatment were investigated. All of these parameters before the fungal treatment were above the recommended standard values based on the Governor regulation of Yogyakarta Special Region No. 7/2010. The level of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and electrical conductance (EC) was reduce by Aspergillus spp. The highest percentage reduction was achieved by Aspergillus sp. 3, namely 88.34% BOD, 89.11% COD, 75.77% TSS, 85.85% TDS and 71.21% EC, after 3 days of incubation. These results show that the positive control isolate had the lowest value. The study confirms the ability of indigenous fungi isolates in the remediation of IB batik effluent and their potential for future analysis in the treatment of all types of batik effluent.


Sign in / Sign up

Export Citation Format

Share Document