scholarly journals Numerical study of conjugate heat transfer in laminar and turbulent nano fluid flow in double pipe heat  exchangers

2016 ◽  
Vol 23 (5) ◽  
pp. 2211-2219
Author(s):  
H. Safikhani ◽  
M. Ahmari ◽  
E. Azadehfar
Volume 3 ◽  
2004 ◽  
Author(s):  
Xuelei Chen ◽  
Mauricio A. Sa´nchez ◽  
William H. Sutton

This investigation is part of the composite fuel project in the University of Oklahoma [1]. The composite fuel is a mixture resulted from natural gas resolving in liquid propane, which has a relatively lower storage pressure compared with that of compressed natural gas. Here in this paper, a numerical investigation of conjugate heat transfer among convection, wall conduction and flow boiling in a double-pipe heat exchanger is presented. The heat exchanger has hot fluid flowing in the annular section and propane boiling in the inside tube. A computer program is developed to calculate the conjugate heat transfer of convection, conduction and boiling. In computing the convection and conduction, control volume method and SIMPLE algorithm are used to solve momentum equations and the energy equation of conjugate heat transfer. The contribution of this work is to combine the third kind (Neuman) of boundary condition with the boiling correlations for flow boiling in horizontal tubes in order to calculate the conjugate heat transfer of the whole problem. Two boiling correlations have been selected to give inside tube boiling heat transfer coefficient. Because the boiling coefficient depends on the wall temperature and local propane quality, so we have to solve the boiling correlation, the conduction and the convection governing equations simultaneously. The iteration method and TDMA are used to solve these coupled equations. The two boiling correlations are Chen’s (1966) correlation [2] and Kandlikar’s (1990) correlation [3]. Finally the results are compared with the experiment data. It has been found in low quality range, Kandlikar’s result is close to the experiment data. Because very few data of propane flow boiling can be found in literature, we use propane pool boiling data by Shen, Spindler and Hahne (1997) [4] to estimate parameter Ffl in Kandlikar’s correlation. The influence of simultaneously developing velocity and temperature field at entrance length in annular passage is considered and discussed in detail. The wall conduction resistance is also compared with convection and boiling resistance in the whole length of the heat exchanger. The completed computer program can be used to the design of shell and tube heat exchangers.


2021 ◽  
Vol 11 (13) ◽  
pp. 5954
Author(s):  
Muhammad Ishaq ◽  
Amjad Ali ◽  
Muhammad Amjad ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal

Heat transfer enhancement in heat exchangers results in thermal efficiency and energy saving. In double-pipe heat exchangers (DPHEs), extended or augmented fins in the annulus of the two concentric pipes, i.e., at the outer surface of the inner pipe, are used to extend the surface of contact for enhancing heat transfer. In this article, an innovative diamond-shaped design of extended fins is proposed for DPHEs. This type of fin is considered for the first time in the design of DPHEs. The triangular-shaped and rectangular-shaped fin designs of DPHE, available in the literature, can be recovered as special cases of the proposed design. An h-adaptive finite element method is employed for the solution of the governing equations. The results are computed for various performance measures against the emerging parameters. The results dictate that the optimal configurations of the diamond-shaped fins in the DPHE for an enhanced heat transfer are recommended as follows: If around 4–6, 8–12, or 16–32 fins are to be placed in the DPHE, then the height of the fins should be 20%, 80%, or 100%, respectively, of the annulus width. If frictional loss of heat is also to be considered, then for fin-heights of 20–80% and 100% of the annulus width, the placement of 4 and 8 diamond-shaped fins, respectively, is recommended for an enhanced heat transfer. These recommendations are for the radii ratio (i.e., the ratio of the inner pipe radius to that of the outer pipe) of 0.25. The recommendations are be modified if the radii ratio is altered.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Muhammad Ishaq ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal ◽  
Ahmad Hassan

A DG-FEM based numerical investigation has been performed to explore the influence of the various geometric configurations on the thermal performance of the conjugate heat transfer analysis in the triangular finned double pipe heat exchanger. The computed results dictate that Nusselt number in general rises with values of the conductivity ratio of solid and fluid, for the specific configuration parameters considered here. However, the performance of these parameters shows strong influence on the conductivity ratio. Consequently, these parameters must be selected in consideration of the thermal resistance, for better design of heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document