scholarly journals Development and Application of Back-Propagation-Based Artificial Neural Network Models in Solving Engineering

Author(s):  
Saleh Mohammed Al-Alawi

Artificial Neural Networks (ANNs) are computer software programs that mimic the human brain's ability to classify patterns or to make forecasts or decisions based on past experience.  The development of this research area can be attributed to two factors, sufficient computer power to begin practical ANN-based research in the late 1970s and the development of back-propagation in 1986 that enabled ANN models to solve everyday business, scientific, and industrial problems.  Since then, significant applications have been implemented in several fields of study, and many useful intelligent applications and systems have been developed.  The objective of this paper is to generate awareness and to encourage applications development using artificial intelligence-based systems.  Therefore, this paper provides basic ANN concepts, outlines steps used for ANN model development, and lists examples of engineering applications based on the use of the back-propagation paradigm conducted in Oman.  The paper is intended to provide guidelines and necessary references and resources for novice individuals interested in conducting research in engineering or other fields of study using back-propagation artificial neural networks.      

Author(s):  
Fathi Ahmed Ali Adam, Mahmoud Mohamed Abdel Aziz Gamal El-Di

The study examined the use of artificial neural network models to predict the exchange rate in Sudan through annual exchange rate data between the US dollar and the Sudanese pound. This study aimed to formulate the models of artificial neural networks in which the exchange rate can be predicted in the coming period. The importance of the study is that it is necessary to use modern models to predict instead of other classical models. The study hypothesized that the models of artificial neural networks have a high ability to predict the exchange rate. Use models of artificial neural networks. The most important results ability of artificial neural networks models to predict the exchange rate accurately, Form MLP (1-1-1) is the best model chosen for that purpose. The study recommended the development of the proposed model for long-term forecasting.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2002 ◽  
pp. 220-235 ◽  
Author(s):  
Paul Lajbcygier

The pricing of options on futures is compared using conventional models and artificial neural networks. This work demonstrates superior pricing accuracy using the artificial neural networks in an important subset of the input parameter set.


2013 ◽  
Vol 14 (1) ◽  
pp. 10-17

Artificial neural networks (ANNs) are being used increasingly to predict water variables. This study offers an alternative approach to quantify the relationship between time of chlorination in potable water (due to convectional treatment procedure) and chlorination by-products concentration (expressed as carbon and bromine) with an ANN model, i.e., capturing non-linear relationships among the water quality variables. Thus, carbon and bromine concentrations in potable water (the second chosen due to the toxicity of brominated trihalomethanes, THMs) were predicted using artificial neural networks (ANNs) based mainly on multi-layer perceptrons (MLPs) architecture. The chlorination (detention) time as much as 58 hours in Athens distributed network, comprised the input variables to the ANNs models. Moreover, to develop an ANN model for estimating carbon and bromine, the available data set was partitioned into training, validation and test set. In order to reach an optimum amount of hidden layers or nodes, different architectures were tested. The quality of the ANN simulations was evaluated in terms of the error in the validation sample set for the proper interpretation of the results. The calculated sum-squared errors for training, validation and test set were 0.056, 0.039 and 0.060 respectively for the best model selected. Comparison of the results showed that a two-layer feed-forward back propagation ANN model could be used as an acceptable model for predicting carbon and bromine contained in potable water THMs.


Author(s):  
Adil Koray Yıldız ◽  
Muhammed Taşova ◽  
Hakan Polatcı

Drying method is preferred in agricultural products since it provides advantages in many processes such as increasing the strength of products, transporting and storing. It is necessary to estimate the drying behavior of the products in order to achieve the best drying without reducing the product quality. For this reason, many numerical drying models have been developed to estimate the drying kinetics of the products. Recently, artificial neural networks have been widely used for the development of these models. Artificial neural networks are mathematical models that work in a similar way to natural neuron cells. Radial based artificial neural networks are radial based activation functions in the transition to the hidden layer unlike other networks. In this study, modeling of drying kinetics with radial based networks was investigated. For the experiment, red hot pepper (Capsicum annuum L.) was dipped in boiled water and microwave pretreatments and, then dried in the oven at 65°C. The absorbable moisture values were calculated during the drying period. The radial based artificial neural network models were trained with the drying time values as input and the absorbable moisture values as output. The study was carried out with two data sets including all data and only the average. In trainings with all data, R value of the best model was calculated as 0.9566. R was calculated as 0.9998 with average data.


2017 ◽  
Vol 42 (4) ◽  
pp. 643-651
Author(s):  
Naveen Garg ◽  
Siddharth Dhruw ◽  
Laghu Gandhi

Abstract The paper presents the application of Artificial Neural Networks (ANN) in predicting sound insulation through multi-layered sandwich gypsum partition panels. The objective of the work is to develop an Artificial Neural Network (ANN) model to estimate the Rw and STC value of sandwich gypsum constructions. The experimental results reported by National Research Council, Canada for Gypsum board walls (Halliwell et al., 1998) were utilized to develop the model. A multilayer feed-forward approach comprising of 13 input parameters was developed for predicting the Rw and STC value of sandwich gypsum constructions. The Levenberg-Marquardt optimization technique has been used to update the weights in back-propagation algorithm. The presented approach could be very useful for design and optimization of acoustic performance of new sandwich partition panels providing higher sound insulation. The developed ANN model shows a prediction error of ±3 dB or points with a confidence level higher than 95%.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul A. Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2013 ◽  
Vol 13 (3) ◽  
pp. 51-64 ◽  
Author(s):  
Ayedh Alqahtani ◽  
Andrew Whyte

Industrial application of life-cycle cost analysis (LCCA) is somewhat limited, with techniques deemed overly theoretical, resulting in a reluctance to realise (and pass onto the client) the advantages to be gained from objective (LCCA) comparison of (sub)component material specifications. To address the need for a user-friendly structured approach to facilitate complex processing, the work described here develops a new, accessible framework for LCCA of construction projects; it acknowledges Artificial Neural Networks (ANNs) to compute the whole-cost(s) of construction and uses the concept of cost significant items (CSI) to identify the main cost factors affecting the accuracy of estimation. ANNs is a powerful means to handle non-linear problems and subsequently map between complex input/output data, address uncertainties. A case study documenting 20 building projects was used to test the framework and estimate total running costs accurately. Two methods were used to develop a neural network model; firstly a back-propagation method was adopted (using MATLAB SOFTWARE); and secondly, spread-sheet optimisation was conducted (using Microsoft Excel Solver). The best network was established as consisting of 19 hidden nodes, with the tangent sigmoid used as a transfer function of NNs model for both methods. The results find that in both neural network models, the accuracy of the developed NNs model is 1% (via Excel-solver) and 2% (via back-propagation) respectively.


2007 ◽  
Vol 362 (1479) ◽  
pp. 421-430 ◽  
Author(s):  
Sami Merilaita

In this paper, I investigate the use of artificial neural networks in the study of prey coloration. I briefly review the anti-predator functions of prey coloration and describe both in general terms and with help of two studies as specific examples the use of neural network models in the research on prey coloration. The first example investigates the effect of visual complexity of background on evolution of camouflage. The second example deals with the evolutionary choice of defence strategy, crypsis or aposematism. I conclude that visual information processing by predators is central in evolution of prey coloration. Therefore, the capability to process patterns as well as to imitate aspects of predator's information processing and responses to visual information makes neural networks a well-suited modelling approach for the study of prey coloration. In addition, their suitability for evolutionary simulations is an advantage when complex or dynamic interactions are modelled. Since not all behaviours of neural network models are necessarily biologically relevant, it is important to validate a neural network model with empirical data. Bringing together knowledge about neural networks with knowledge about topics of prey coloration would provide a potential way to deepen our understanding of the specific appearances of prey coloration.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 618
Author(s):  
Paola A. Sanchez-Sanchez ◽  
José Rafael García-González ◽  
Juan Manuel Rúa Ascar

Background: Previous studies of migraine classification have focused on the analysis of brain waves, leading to the development of complex tests that are not accessible to the majority of the population. In the early stages of this pathology, patients tend to go to the emergency services or outpatient department, where timely identification largely depends on the expertise of the physician and continuous monitoring of the patient. However, owing to the lack of time to make a proper diagnosis or the inexperience of the physician, migraines are often misdiagnosed either because they are wrongly classified or because the disease severity is underestimated or disparaged. Both cases can lead to inappropriate, unnecessary, or imprecise therapies, which can result in damage to patients’ health. Methods: This study focuses on designing and testing an early classification system capable of distinguishing between seven types of migraines based on the patient’s symptoms. The methodology proposed comprises four steps: data collection based on symptoms and diagnosis by the treating physician, selection of the most relevant variables, use of artificial neural network models for automatic classification, and selection of the best model based on the accuracy and precision of the diagnosis. Results: The artificial neural network models used provide an excellent classification performance, with accuracy and precision levels >97% and which exceed the classifications made using other model, such as logistic regression, support vector machines, nearest neighbor, and decision trees. Conclusions: The implementation of migraine classification through artificial neural networks is a powerful tool that reduces the time to obtain accurate, reliable, and timely clinical diagnoses.


Sign in / Sign up

Export Citation Format

Share Document