scholarly journals Compact Circularly Polarized Slotted Symmetric V slits Microstrip Patch Antenna for ISM Band Applications

2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Naw Khu Say Wah ◽  
Hla Myo Tun

This paper presents a short microstrip patch antenna and analyzes its characteristics in simulation and measured ways. The proposed antenna is meant to be used from 2.4 to 2.5 GHz at the resonant frequency of 2.45 GHz Industrial, Science, and Medical (ISM) spectrum. Besides, insert a diagonal slot in the main patch, and two cutting edges with V-slit gives the antenna to propagate a circular polarization pattern. The paper aims to start learning a simple C.P. patch antenna supported the basic concept of microstrip antenna theory. A single-feed C.P., truncated corners, and slit and slot methods are employed to model the antenna apart from its parametric study. The substrate material of the developed antenna is FR-4, and it's a relative permittivity of 4.4. The antenna incorporates a compact overall size of 0.389λ0 × 0.389λ0 × 0.013λ0, where λ0 is that the corresponding free-space wavelength at 2.45 GHz. FEKO has been used for not only designing the antenna model but also analyzing its performances. Simulated and measured results have reported that the antenna can work in ISM bands (2.42-2.5 GHz) with VSWR< 2, low realized gain, and the limited 3-dB axial ratio at 2.45 GHz.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ke Zhang ◽  
Changrong Liu ◽  
Xueguan Liu ◽  
Huiping Guo ◽  
Xinmi Yang

A compact circularly polarized antenna operating at 915 MHz industrial, scientific, and medical (ISM) band for biomedical implantable applications is presented and experimentally measured. The proposed antenna can be miniaturized to a large extent with the compact size of 15 × 15 × 1.27 mm3 by means of loading patches to a ring-shaped microstrip patch antenna. An impedance bandwidth of 10.6% (865–962 MHz) for reflection coefficient less than −10 dB can be obtained. Meanwhile, the simulated 3 dB axial-ratio (AR) bandwidth reaches 14 MHz. Finally, the optimized design was fabricated and tested, and the measured results agree well with simulated results.


The circularly polarized microstrip antenna has been of great importance in WLAN applications. A circularly polarized slotted circular patch antenna with co-axial feed geometry has been designed to meet the requirements. The antenna designed has been slotted at several locations to make it radiate circularly polarized radiation. Two metallic cylindrical vias have been inserted near the two diametric ends of the slot to improve the realized gain of the antenna. The antenna structure is resonating at 6.4 GHz with 3dB axial ratio bandwidth of 200MHz and gain of 9.8dB has been observed.


2013 ◽  
Vol 347-350 ◽  
pp. 1786-1789
Author(s):  
Kang Ding ◽  
Tong Bin Yu ◽  
Dong Fang Guan ◽  
Cheng Peng

This paper proposes a novel stacked tri-band circularly polarized antenna which has three independent ports. To obtain tri-band operation, a stacked three layers of microstrip antenna working at different frequency is presented. Each of them is fed by dual feed probes. The simulated results show that the antenna can cover Compass Navigation Satellite System CNSS B3 1.268 GHz, L band 1.615 GHz and S band 2.49 GHz. The proposed antenna has achieved a bandwidth of 3.1%, 6.8% and 2.3% at each band, respectively. It exhibits small axial ratio under 3dB in three bands for the CNSS applications. Details of the proposed antenna design and results for the obtained tri-band circularly polarized performances are presented and discussed.


2014 ◽  
Vol 662 ◽  
pp. 243-246
Author(s):  
Shuang Zhao ◽  
Dian Ren Chen

A single array element circularly polarized microstrip patch antenna is analyzed based on the theory of cavity mode. Through studying the design of circularly polarized microstrip antenna array, a 96 elements circularly polarized microstrip antenna array is designed and it is optimized by using the Ansoft's HFSS software. After testing of the antenna, we can see that it provides a gain of 22.6dB and has a good axial ratio.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2021 ◽  
Vol 11 (19) ◽  
pp. 8869
Author(s):  
Manzoor Elahi ◽  
Son Trinh-Van ◽  
Youngoo Yang ◽  
Kang-Yoon Lee ◽  
Keum-Cheol Hwang

In this article, a high gain and compact 4 × 4 circularly polarized microstrip patch antenna array is reported for the data transmission of the next-generation small satellite. The radiating element of the circularly polarized antenna array is realized by the conventional model of the patch with truncated corners. A compact two-stage sequential rotational phase feeding is adopted that broadens the operating bandwidth of the 4 × 4 array. A small stub is embedded in the sequential rotational feed, which results in better performance in terms of the S-parameters and sequential phases at the output ports than sequential rotational feed without open stub. A prototype of the array is fabricated and measured. Fulfilling the application requirements of the next-generation small satellites, the array has the left-handed circularly polarized gain of more than 12 dBic with the axial ratio level below 1.5 dB in the ±10∘ angular space with respect to the broadside direction for the whole bandwidth from 8.05 GHz to 8.25 GHz. Moreover, the left-handed circularly polarized gain varies from 15 to 15.5 dBic in the desired band. The radiation patterns are measured; both the co- and X-pol are validated.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012124
Author(s):  
Ravi Shankar Saxena ◽  
S Kavitha ◽  
Ashish Singh ◽  
Anurag Mishra

Abstract In this paper, an analysis of dual frequency resonance antenna is achieved by OM-shape microstrip patch antenna. The proposed antenna is analyzed using IE3D simulation software. The analysis of proposed structure is done by varying the dielectric constants and height of the substrate as well as gain and radiation pattern of the antenna is obtained. It observed that on varying the dielectric substrate the effect on proposed antenna is very effective.


This article focuses on designing a single-feed circularly polarized equilateral triangular microstrip patch antenna. The axial ratio bandwidth of the antenna is around 190 MHz. The antenna has been etched at specific locations for achieving circular polarization. The suppression of surface waves is also being focused upon for gain enhancement. The array of cylindrical metallic pins is embedded near the radiating side of the patch antenna. The gain enhancement of around 3.23 dB is observed. The antenna is designed for use in satellite communications.


2011 ◽  
Vol 148-149 ◽  
pp. 149-152
Author(s):  
Zhong Liang Deng ◽  
Man Zu Hong ◽  
Yi Dong Yao

A miniature circularly polarized (CP) microstrip patch antenna with rectangular slots for GPS application is presented. The antenna structure is composed of a square radiating patch and two rectangular slots. The two rectangular slots are incorporated to obtain CP characteristic, with one slot on the lower left corner of the square patch and the other on the upper right corner. By adjusting the dimensions and positions of the slots, the proposed antenna can exhibit CP radiation. Moreover, miniature properties are achieved by the use of very high permittivity substrate material. Simulated results by Ansoft HFSS are given.


Sign in / Sign up

Export Citation Format

Share Document