scholarly journals Prediksi Spasial Wilayah Resiko Tanah Longsor Di Jawa Tengah Berdasarkan SAVI, OSAVI, DVI, NDVI Menggunakan Krigging

2018 ◽  
Vol 1 (2) ◽  
pp. 80-86
Author(s):  
Dwi Hayati ◽  
Sri Yulianto Joko Prasetyo

Landslides are the process of moving rock periods (soil) due to gravity. On the spatial prediction of landslide occurrence in the District in Central Java based on vegetation index using kriging. The vegetation index is the amount of green vegetation values obtained from the processing of digital signal data of the brightness value of several satellite sensor data channels. Some of the vegetation index algorithms used are SAVI (Soil Adjusted Vegetation Index), OSAVI (Optimized Soil Adjusted Vegetation Index), DVI (Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index). Kriging is one of the prediction and interpolation methods in geostatistika, consisting of two types of ordinary kriging when only one variable and cokriging when there are more than one variable observed. Kriging functioning formation of color gradient pattern on map result of data interpolation. In this research it was found that the occurrence of landslide in the sample area correlated with low, medium, high, DVI vegetation index of DVI, NDVI, SAVI, OSVII. Banjarnegara Regency is prone to landslides in medium category, Wonosobo Regency in High category, Magelang Regency in High category, Kebumen Regency in Low category, Purworejo Regency in Low category. So it can be concluded that landslides are affected or associated with low tree cover seen by NDVI, DVI, SAVI, OSAVI vegetation indices.

2018 ◽  
Author(s):  
Intan Philiani

Tatapaan District in North Minahasa has mangrove forest covering an area of 8.736.00 m2. One of the village in Tatapaan District is Arakan. This study aim for mapping mangrove density in Arakan village and determine the best result of Normalized Difference Vegetation Index (NDVI) from band combination used. NDVI method calculate the amount of vegetation greeness value derived from digital signal processing of brightness value data of multiple channels satellite sensor data from satellite images. NDVI measures the slope between the original value of the red band and infrared band in the sky with the value of each pixel in the image. Imagery used is Worldview2 satellite image recording on June 19th 2014. Based on the combination of bands used, the best result of band combination is the combination of Red and NIR 2 band with the value of the smallest error rate of deviation, ie 0.3. The density of the widest is “Rapat” class (824,566.01 m2), “Sedang” class (133,622.41 m2), “Jarang” class (12,004.92 m2), “Sangat jarang” class (10,494.23 m2), and the smallest is “Sangat rapat” class (24.45 m2).


2020 ◽  
Vol 9 (3) ◽  
pp. 1149-1158
Author(s):  
Sri Yulianto Joko Prasetyo ◽  
Kristoko Dwi Hartomo ◽  
Mila Chrismawati Paseleng ◽  
Dian Widiyanto Chandra ◽  
Edi Winarko

Central Java Province is one of provinces in Indonesia that has a high aridity risk index. Aridity disaster risk monitoring and detection can be done more accurately in larger areas and with lower costs if the vegetation index is extracted from the remote sensing imagery. This study aims to provide accurate aridity risk index information using spectral vegetation index data obtained from LANDSAT 8 OLI satellite. The classification of drought risk areas was carried out using k-nn with the Spatial Autocorrelation method. The spectral vegetation indices used in the study are NDVI, SAVI, VHI, TCI and VCI. The results show a positive correlation and trend between the spectral vegetation index influenced by seasonal dynamics and the characteristics of the High R.A. and Middle R.A. drought risk areas. The highest correlation coefficient is SAVI with a High R.A. amounted to 0.967 and Middle R.A. amounted to 0.951. The results of the Kappa accuracy test comparison show that SVM and k-nn have the same accuracy of 88.30. The result of spatial prediction using the IDW method shows that spectral vegetation index data that initially as an outlier, using the k-nn method, the spectral vegetation index data can be identified as data in the aridity classification. The spatial connectivity test among sub-districts that experience drought was done using Moran’s I Analysis.


2021 ◽  
Vol 13 (4) ◽  
pp. 577
Author(s):  
Per-Ola Olsson ◽  
Ashish Vivekar ◽  
Karl Adler ◽  
Virginia E. Garcia Millan ◽  
Alexander Koc ◽  
...  

Unmanned aerial systems (UAS) carrying commercially sold multispectral sensors equipped with a sunshine sensor, such as Parrot Sequoia, enable mapping of vegetation at high spatial resolution with a large degree of flexibility in planning data collection. It is, however, a challenge to perform radiometric correction of the images to create reflectance maps (orthomosaics with surface reflectance) and to compute vegetation indices with sufficient accuracy to enable comparisons between data collected at different times and locations. Studies have compared different radiometric correction methods applied to the Sequoia camera, but there is no consensus about a standard method that provides consistent results for all spectral bands and for different flight conditions. In this study, we perform experiments to assess the accuracy of the Parrot Sequoia camera and sunshine sensor to get an indication if the quality of the data collected is sufficient to create accurate reflectance maps. In addition, we study if there is an influence of the atmosphere on the images and suggest a workflow to collect and process images to create a reflectance map. The main findings are that the sensitivity of the camera is influenced by camera temperature and that the atmosphere influences the images. Hence, we suggest letting the camera warm up before image collection and capturing images of reflectance calibration panels at an elevation close to the maximum flying height to compensate for influence from the atmosphere. The results also show that there is a strong influence of the orientation of the sunshine sensor. This introduces noise and limits the use of the raw sunshine sensor data to compensate for differences in light conditions. To handle this noise, we fit smoothing functions to the sunshine sensor data before we perform irradiance normalization of the images. The developed workflow is evaluated against data from a handheld spectroradiometer, giving the highest correlation (R2 = 0.99) for the normalized difference vegetation index (NDVI). For the individual wavelength bands, R2 was 0.80–0.97 for the red-edge, near-infrared, and red bands.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Jesús Julio Camarero ◽  
Michele Colangelo ◽  
Antonio Gazol ◽  
Manuel Pizarro ◽  
Cristina Valeriano ◽  
...  

Windstorms are forest disturbances which generate canopy gaps. However, their effects on Mediterranean forests are understudied. To fill that research gap, changes in tree, cover, growth and soil features in Pinus halepensis and Pinus sylvestris plantations affected by windthrows were quantified. In each plantation, trees and soils in closed-canopy stands and gaps created by the windthrow were sampled. Changes in tree cover and radial growth were assessed by using the Normalized Difference Vegetation Index (NDVI) and dendrochronology, respectively. Soil features including texture, nutrients concentration and soil microbial community structure were also analyzed. Windthrows reduced tree cover and enhanced growth, particularly in the P. halepensis site, which was probably more severely impacted. Soil characteristics were also more altered by the windthrow in this site: the clay percentage increased in gaps, whereas K and Mg concentrations decreased. The biomass of Gram positive bacteria and actinomycetes increased in gaps, but the biomass of Gram negative bacteria and fungi decreased. Soil gaps became less fertile and dominated by bacteria after the windthrow in the P. halepensis site. We emphasize the relevance of considering post-disturbance time recovery and disturbance intensity to assess forest resilience within a multi-scale approach.


2021 ◽  
Vol 10 (3) ◽  
pp. 129
Author(s):  
Vincent Nzabarinda ◽  
Anming Bao ◽  
Wenqiang Xu ◽  
Solange Uwamahoro ◽  
Madeleine Udahogora ◽  
...  

Vegetation is vital, and its greening depends on access to water. Thus, precipitation has a considerable influence on the health and condition of vegetation and its amount and timing depend on the climatic zone. Therefore, it is extremely important to monitor the state of vegetation according to the movements of precipitation in climatic zones. Although a lot of research has been conducted, most of it has not paid much attention to climatic zones in the study of plant health and precipitation. Thus, this paper aims to study the plant health in five African climatic zones. The linear regression model, the persistence index (PI), and the Pearson correlation coefficients were applied for the third generation Normalized Difference Vegetation Index (NDVI3g), with Climate Hazard Group infrared precipitation and Climate Change Initiative Land Cover for 34 years (1982 to 2015). This involves identifying plants in danger of extinction or in dramatic decline and the relationship between vegetation and rainfall by climate zone. The forest type classified as tree cover, broadleaved, deciduous, closed to open (>15%) has been degraded to 74% of its initial total area. The results also revealed that, during the study period, the vegetation of the tropical, polar, and warm temperate zones showed a higher rate of strong improvement. Although arid and boreal zones show a low rate of strong improvement, they are those that experience a low percentage of strong degradation. The continental vegetation is drastically decreasing, especially forests, and in areas with low vegetation, compared to more vegetated areas, there is more emphasis on the conservation of existing plants. The variability in precipitation is excessively hard to tolerate for more types of vegetation.


2021 ◽  
Vol 13 (6) ◽  
pp. 1144
Author(s):  
Mahendra Bhandari ◽  
Shannon Baker ◽  
Jackie C. Rudd ◽  
Amir M. H. Ibrahim ◽  
Anjin Chang ◽  
...  

Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


Author(s):  
Angel M. Dzhambov ◽  
Iana Markevych ◽  
Boris Tilov ◽  
Zlatoslav Arabadzhiev ◽  
Drozdstoj Stoyanov ◽  
...  

Growing amounts of evidence support an association between self-reported greenspace near the home and lower noise annoyance; however, objectively defined greenspace has rarely been considered. In the present study, we tested the association between objective measures of greenspace and noise annoyance, with a focus on underpinning pathways through noise level and perceived greenspace. We sampled 720 students aged 18 to 35 years from the city of Plovdiv, Bulgaria. Objective greenspace was defined by several Geographic Information System (GIS)-derived metrics: Normalized Difference Vegetation Index (NDVI), tree cover density, percentage of green space in circular buffers of 100, 300 and 500 m, and the Euclidean distance to the nearest structured green space. Perceived greenspace was defined by the mean of responses to five items asking about its quantity, accessibility, visibility, usage, and quality. We assessed noise annoyance due to transportation and other neighborhood noise sources and daytime noise level (Lday) at the residence. Tests of the parallel mediation models showed that higher NDVI and percentage of green space in all buffers were associated with lower noise annoyance, whereas for higher tree cover this association was observed only in the 100 m buffer zone. In addition, the effects of NDVI and percentage of green space were mediated by higher perceived greenspace and lower Lday. In the case of tree cover, only perceived greenspace was a mediator. Our findings suggest that the potential for greenspace to reduce noise annoyance extends beyond noise abatement. Applying a combination of GIS-derived and perceptual measures should enable researchers to better tap individuals’ experience of residential greenspace and noise.


Sign in / Sign up

Export Citation Format

Share Document