Study on the Fire Retardant Treatment Technologies of Bamboo Particleboard

2014 ◽  
Vol 1051 ◽  
pp. 273-277
Author(s):  
Chun Gui Du ◽  
Jian Gang Song

This paper presents a study on the different fire retardant treatment technologies influence on the physical and mechanical properties of bamboo particleboard. The results showed: the properties of bamboo particleboard would change with changing of fire retardant treatment technology; among them the treated technology of fire retardant spraying after resin blending had larger changed; compared with non-fire retardant bamboo particleboard, the density and moisture content (MC) and 2h thickness swell (2h TS) of fire retardant bamboo particleboard had a little improved, and their internal bond (IB) and modulus of rupture (MOR) and modulus of elasticity (MOE) had slightly reduced.

PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2012 ◽  
Vol 506 ◽  
pp. 607-610 ◽  
Author(s):  
N. Thongjun ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Oil palm frond pulp (OPF) was blended with activated carbon for the purpose of active packaging in this preliminary study. It was aimed to investigate the effect of in-situ activated carbon on physical and mechanical properties of the pulp handsheets made from OPF. Testing of property performances of the resulted handsheets included density, moisture content, thickness swelling, folding, tensile strength, %elongation, stiffness, and modulus of rupture. Ultimately, the intention is to use for prospected active packaging for fresh produce. OPF pulp was prepared by the kraft process. The pulp stock was mixed with different proportions of activated carbon (0, 10, 20, and 30% w/w). The results showed that an increased proportion of activated carbon decreased density and thickness selling, but had no effect on moisture content.


2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9596-9610
Author(s):  
Yali Shao ◽  
Lili Li ◽  
Zhangjing Chen ◽  
Sunguo Wang ◽  
Ximing Wang

Poplar (Populus) wood was subjected in this work to thermo-hydro-mechanical treatment. The influence of the treatment parameters on the physical and mechanical properties were investigated. The wood samples were densified under three compression ratios (0%, 30%, and 50%), and thermally treated at three temperatures (180 °C, 200 °C, and 220 °C), at three thermal treatment durations (3 h, 4 h, and 5 h). The density, modulus of elasticity, modulus of rupture, radial hardness, and thickness swelling were measured. The results showed that the densities of the samples increased by 36.6% to 49.7%. As the compression rate increased, the temperature, duration, modulus of elasticity, modulus of rupture, and hardness increased. However, the dimensions of the densified samples were less stable. Compared to the densified samples, the maximum thickness swelling could be reduced by 74% (from 29.7% to 7.8%) when subjected to a thermal treatment at 220 °C for 3 h.


Author(s):  
Atoyebi Olumoyewa Dotun ◽  
Odeyemi Samson Olalekan ◽  
Azeez Lateef Olugbenga ◽  
Modupe Abayomi Emmanuel

This study considered the production of composite ceiling boards from both agricultural and industrial wastes. Boards with different blending proportions by weight of cement, corncob and sawdust (Cem:Ccb:Swd) were produced and tested. Physical and mechanical tests such as Water Absorption (WA), Thickness Swelling (TS), Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were carried out on the products. The findings revealed that the board with Cem:Ccb:Swd blending proportion 50:10:40 gave the highest values of MOE and MOR and also had the lowest values of WA and TS. The MOE and MOR values of 3.432 are both higher than the minimum values of 550 N/mm2 and 3 N/mm2 specified for MOE and MOR respectively by the American National Standard Institute, for general-use particle boards. The cement content is inversely proportional to the physical properties and directly proportional to the mechanical properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen Warui Kariuki ◽  
Jackson Wachira ◽  
Millien Kawira ◽  
Genson Murithi

Formaldehyde-based resins are conventionally used as a binder in formulation of particleboard. Epidemiologic studies have shown that formaldehyde is carcinogenic. Efforts to reduce the health hazard effects of the fomaldehyde-based resin in the particleboard formulation have included use of scavengers for formaldehydes and use of an alternative binder. Use of scavengers for the formaldehyde increases the cost and maintenance of particleboard formulation. There is no proof that scavengers eliminate the emission of formaldehyde from particleboard. Use of biobased binders in particleboard formulation provides an alternative for eliminating use of the formaldehyde-based resin. However, the alternative is hindered by challenges, which include limitations of physical and mechanical properties. The challenge has continuously been acted upon through research. The paper presents an overview of the use of starch as an alternative binder. Improvement over time of the starch and limitations thereof requires to be addressed. Use of the modified starch has shown increased particleboard performance. Mechanical strength, such as modulus of rupture, modulus of elasticity, and internal bonding in particleboards, however, remains to be a challenge.


2019 ◽  
Vol 70 (3) ◽  
pp. 221-228
Author(s):  
Abdullah Istek ◽  
Ismail Ozlusoylu

In this study, the effect of mat moisture content on the physical and mechanical properties of particleboard was investigated. The experimental boards were produced by using 40 % softwood, 45 % hardwood chips, and 15 % sawdust. The formaldehyde resin/adhesive was used in three-layers (bottom-top layer 12 %, core layer 8 %). Multi-opening press was used during manufacturing the experimental particleboards. The physical and mechanical properties of boards obtained were identified according to the TS-EN standards. The optimum core layer moisture content was determined as 6 % and 7 % according to the results, whereas the moisture content of bottom and top layers was 14 %. Under these moisture content conditions, the bending strength was found to be 13.3 N/mm², the modulus of elasticity in bending 2466 N/mm², and internal bonding strength 0.44 N/mm². The optimum bottom-top layer moisture content was determined to be between 13 % and 15 % and 6.5 % for the core layer.


Sign in / Sign up

Export Citation Format

Share Document