scholarly journals The classical mechanics engineered of Bambusa vulgaris and Schizostachyum brachycladum

2021 ◽  
Vol 6 (2) ◽  
pp. 57-61
Author(s):  
Mohamad Saiful Sulaiman ◽  
Sitti Fatimah Mhd. Ramle ◽  
Rokiah Hashim ◽  
Othman Sulaiman ◽  
Mohd Hazim Mohamad Amini ◽  
...  

Physical and mechanical properties of Bambusa vulgaris and Schizostachyum brachycladum wereinvestigated. The sample were classified into two different ages which are young and mature foreach culm of bamboo. The aim of this study to investigate the physical properties such as density,basic density, moisture content, water absorption and thickness swelling. Other than that, themechanical properties also help to determine their flexural test for modulus of rupture (MOR) andmodulus of elasticity (MOE). The method used to analyse physical and mechanical properties werefollowing the ISO standard. From this study, young Bambusa vulgaris has indicated the highercontent of moisture content, water absorption and thickness swelling with 67.66%, 2.69% and34.03%, respectively while mature Schizostachyum brachycladum has shown the higher value inbasic density, density, and flexural test for MOR and MOE with 876.33 kg/m3, 1084.49 kg/m3, 317.01 N/mm2 and 122986.18 N/mm2, respectively.

2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 419
Author(s):  
Giuliano Ferreira Pereira ◽  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Polliana D'angelo Rios ◽  
Renan Zunta Raia

The objective of this research was to evaluate the effects of thermal modifications, at different temperatures and exposure times, on the technological properties of mixed particleboard / OSB panels made out of Eucalyptus badjensis. Using the wood of Eucalyptus badjensis, Particleboard, OSB and mixed Particleboard/OSB panels (control and thermally modified) were manufactured. The mixed panels’ thermal modification was carried out under three temperatures (180ºC, 200ºC and 220ºC) and two exposure times (10 minutes and 12 minutes). For the panels’ manufacturing, 6% of phenol-formaldehyde adhesive and 1% of paraffin were employed, which was calculated based on the particles’ dry mass. The water absorption and thickness swelling properties were evaluated after 2 and 24 hours of immersion, in addition to the panels’ modulus of elasticity, modulus of rupture and internal bond. Based on the results, we were able to conclude that the thermal modification affected most of the physical properties positively. From the different exposure times studied, the most effective one was the period of 12 minutes, especially for water absorption after 2 hours, which caused a reduction of 11.27%. In turn, the most effective temperature was of 220ºC, highlighting the thickness swelling after 24 hours, which caused a swelling decrease of 23.76% in comparison with the control panels. Regarding the mechanical properties, the thermal modification, in terms of the studied exposure times and temperatures, did not affect the results of the mixed particleboard /OSB panels. 


2021 ◽  
Vol 9 (3) ◽  
pp. 454-465
Author(s):  
Tengku Muhammad Renzy Hariz ◽  
Indra Agus Santosa ◽  
Muhammad Iqbal Maulana ◽  
Marwanto ◽  
Denni Prasetia ◽  
...  

The objectives of this research were to evaluate bamboo-oriented strand board (BOSB) characteristics made from betung (Dendrocalamus asper), ampel (Bambusa vulgaris), and their mixtures at two different contents (3% and 5%) of methylene diphenyl di-isocyanate (MDI) adhesives. The strands were steam-treated at 126°C for 1 h under the pressure of 0.14 MPa. Three-layered BOSBs with a target density of 0.7 g/cm3 were made with the size of 30 cm x 30 cm x 0.9 cm and a shelling ratio of 1:2:1 (face:core:back layers). The physical and mechanical properties of BOSB were evaluated following JIS A 5908 (2003) standard, and the results were compared with the CSA 0437.0 Grade O-1 standard. The results show that BOSB from the mixtures of betung and ampel bamboo strands has higher dimensional stability as shown by the decrease in water absorption and thickness swelling and higher mechanical properties than single BOSB. All BOSBs with 5% resin content have higher dimensional stability, MOE, and MOR than BOSB with 3% resin content. The physical and mechanical properties of all BOSB manufactured met the CSA 0437.0 Grade O-1 standard. This study proved that BOSBs from the mixture of betung and ampel strands have the potential to be developed due to having better physical and mechanical qualities than a single BOSB. Keywords: ampel (Bambusa vulgaris), bamboo oriented strand board, betung (Dendrocalamus asper), resin content, strand mixtures


2016 ◽  
Vol 8 (2) ◽  
pp. 43-52 ◽  
Author(s):  
Djoko Purwanto

Oil palm empty fruit bunches (OPEFB) fiber were industrial waste that has not been widely used by the community, only stacked and cause odors that interfere with the surrounding environment. This research studied the utilization of OPEFB fiber for cement board products using cement as resin and CaCl2 as accelerator. Laboratory scale cement board made from OPEFB fiber were mixed with cement, and CaCl2. The composition of fiber and cement were 1:1, 1:1.5, 1:2, and CaCl2 variations were 0%, 1% and 3%. A mixture of fibers, cement and CaCl2 was compressed at the pressure of 4 ton for 24 hours. The cement boards were tested for physical and mechanical properties according to JIS A 5417-1992, and the results were compared to the requirements of the cement board JIS A 5417-1992. Cement board made from fiber and cement composition 1:1.5 and CaCl2 content 3% produced moisture content, thickness swelling, water absorption, density, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength that met the requirement of JIS A 5417-1992. The composition of fiber and cement and the variations of CaCl2 content produced significant effect on water content, water absorption, thickness swelling, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength on cement boards.Keywords : oil palm empty fruit bunches fiber, cement boards, physical and mechanical properties


2018 ◽  
Vol 2 (6) ◽  
pp. 6-9
Author(s):  
Ros Syazmini Mohd Ghani ◽  

The study was carried out to determine the physical and mechanical properties of composite lumber made from cassava (Mahinot esculenta Crantz) and bamboo (Bambusa vulgaris) in different ratios which is 100% cassava with 0% bamboo, 75% cassava with 25% bamboo, 50% cassava with 50% bamboo, 25% cassava with 75% bamboo and 0% cassava with 100% bamboo. The tests samples for determining the strength properties were divided into two categories namely mechanical testing and physical testing. Basic density of the samples was carried out for physical testing. The lowest basic density was in samples with 100% cassava which is 0.49 g/cm3 and highest in samples with 100% bamboo which is 0.68 g/cm3 . Two tests for the mechanical testing are bending test and compression test. In bending test, modulus of elasticity (MOE) and modulus of rupture (MOR) were both highest for samples with 100% bamboo which the reading of MOE was 16794.03 N/mm2 and 122.52 N/mm2 for MOR. Similar to the bending test, compression test is the highest for the samples with 100% bamboo which are 65.58 N/mm2 . From statistical analysis, the basic density, static bending can compression strength give significant value at 95% confidence interval.


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


2010 ◽  
Vol 150-151 ◽  
pp. 634-639 ◽  
Author(s):  
Rong Xian Zhu ◽  
Wen Ji Yu

The effect of density on physical and mechanical properties of phenolic-impregnated cold-pressing reconstituted small-sized bamboo fibrous sheet composite was evaluated. The results indicated that with the density increased from 0.85g/cm3 to 1.20 g/cm3: water absorption decreased, thickness swelling increased first and then decreased; the value of modulus of rupture(MOR) increased from 120MPa to 230MPa, R2 was 0.885; the value of modulus elasticity(MOE) increased from 1.8×104MPa to 2.8×104MPa, R2 was 0.978; the shearing strength (perpendicular loading) increased from 6.5MPa to 18MPa, R2 was 0.978;the shearing strength( parallel loading) increased from 6.3MPa to 26MPa, R2 was 0.973;the compression parallel to grain values increased from 80MPa to 120MPa.


1970 ◽  
Vol 43 (4) ◽  
pp. 581-587
Author(s):  
M Hasan Shahria ◽  
M Ashaduzzaman ◽  
M Iftekhar Shams ◽  
Arifa Sharmin ◽  
M Muktarul Islam

The study was conducted to find out the potentiality of Pitali (Trewia nudiflora) for manufacturing commercial plywood and evaluating its physical and mechanical properties. Two 9-ply plywood of 2.4m x 1.2m x 18mm size were manufactured using liquid urea formaldehyde adhesive. The physical and mechanical properties of T. nudiflora plywood were compared with the existing market available plywood manufactured by Simul (Bombax ceiba). It was found that density were 509.82 kg/m3 and 490.96 kg/m3, moisture content after curing were 10.67% and 17.61%, thickness swelling were 6.90% and 7.29%, linear expansion were 0.19% and 0.15%, water absorption were 50.89% and 64.79%, MOR were 29.94 N/mm2 and 27.05 N/mm2, MOE were 1613.89 N/mm2 and 1160.68 N/mm2, and tensile strength were 14.75 N/mm2 and 13.12 N/mm2 for T. nudiflora plywood and market plywood respectively. The evaluated physical and mechanical properties of T. nudiflora plywood were also compared with some relevant results and standards reported earlier. Key Words: Plywood, Trewia nudiflora, Physical properties, Mechanical properties. doi: 10.3329/bjsir.v43i4.2249 Bangladesh J. Sci. Ind. Res. 43(4),581-587, 2008


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 717
Author(s):  
Dang Duc Viet ◽  
Te Ma ◽  
Tetsuya Inagaki ◽  
Nguyen Tu Kim ◽  
Nghiem Quynh Chi ◽  
...  

Acacia plants are globally important resources in the wood industry, but particularly in Southeast Asian countries. In the present study, we compared the physical and mechanical properties of polyploid Acacia (3x and 4x) clones with those of diploid (2x) clones grown in Vietnam. We randomly selected 29 trees aged 3.8 years from different taxa for investigation. BV10 and BV16 clones represented the diploid controls; X101 and X102 were the triploid clones; and AA-4x, AM-4x, and AH-4x represented neo-tetraploid families of Acacia auriculiformis, Acacia mangium, and their hybrid clones. The following metrics were measured in each plant: stem height levels, basic density, air-dry equilibrium moisture content, modulus of rupture (MOR), modulus of elasticity (MOE), compression strength, and Young’s modulus. We found that the equilibrium moisture content significantly differed among clones, and basic density varied from pith-to-bark and in an axial direction. In addition, the basic density of AA-4x was significantly higher than that of the control clones. Furthermore, the MOR of AM-4x was considerably lower than the control clones, whereas the MOE of X101 was significantly higher than the control values. The compression strength of AM-4x was significantly lower than that of the control clones, but AH-4x had a significantly higher Young’s modulus. Our results suggest that polyploid Acacia hybrids have the potential to be alternative species for providing wood with improved properties to the forestry sector of Vietnam. Furthermore, the significant differences among the clones indicate that opportunities exist for selection and the improvement of wood quality via selective breeding for specific properties.


2021 ◽  
Vol 11 (23) ◽  
pp. 11138
Author(s):  
Derrick Mirindi ◽  
Richard O. Onchiri ◽  
Joseph Thuo

Due to the rising prices and high demand for panels and the fact that formaldehyde—a known carcinogen—is used to manufacture conventional particleboard, this study investigated the suitability of particleboard formed from ground macadamia nutshells mixed with 50%, 40%, 30%, and 20% of gum Arabic and determined its physical and mechanical properties. The specific gravity, the bulk density, the x-ray fluorescence, and the scanning electron microscopy analysis of the two materials were analyzed. After production, the particleboards were cured for 56 days in an acclimatized room; then, the physical and mechanical properties were evaluated. Particleboards mixed with 50% gum Arabic and 50% macadamia nutshell showed good results in terms of the lowest average values of water absorption (9.42%) and thickness swelling (6.22%) after 24 h of immersion in distilled water as well as the highest density (1219.20 kg/m3), modulus of rupture (12.21 MPa), modulus of elasticity (1.81 GPa), internal bond strength (1.25 MPa), and compressive strength (22.54 MPa). According to ANSI/A208.1-1999, the particleboards produced met the standard for general-purpose boards except for water absorption (WA) and thickness swelling (TS) characteristics, which were above the maximum of 8% and 3%, respectively.


Sign in / Sign up

Export Citation Format

Share Document