scholarly journals Seed Germination of Roundleaf Buffaloberry (Shepherdia rotundifolia) and Silver Buffaloberry (Shepherdia argentea) in Three Substrates

2009 ◽  
Vol 27 (3) ◽  
pp. 129-133
Author(s):  
Taun Beddes ◽  
Heidi A. Kratsch

Abstract Many western native plant species occur in areas characterized by well-drained soils low in organic matter. Some drought-tolerant native plant species exhibit poor seed germination. It was hypothesized that traditional growing substrates high in organic matter may impede their germination; therefore, stratified seeds of roundleaf buffaloberry (Shepherdia rotundifolia) and silver buffaloberry (Shepherdia argentea) were sown in three substrates differing in organic matter and drainage properties. Seed flats were irrigated twice daily to container capacity, and held on a greenhouse bench for 40 days. Seeds of roundleaf buffaloberry exhibited greatest total germination in a calcined montmorillonite calcined clay substrate (66%); seeds exhibited low germination in a commercial peat-based germination mix (13%) and in a self-prepared, locally popular substrate (22%) that contained sphagnum peat: perlite: calcined clay: sand (2: 2: 1: 1 by vol). Seed germination of silver buffaloberry varied from 42 to 54% and was not different among the three substrates. When substrates are kept consistently moist, a calcined-clay substrate can improve germination of roundleaf buffaloberry, but not silver buffaloberry.

2013 ◽  
Vol 31 (2) ◽  
pp. 89-93
Author(s):  
Taun Beddes ◽  
Richard Anderson ◽  
Ricardo Ramirez

Water conservation efforts in urban landscapes have increased the need for water-wise-plants. A potential source includes multiple native, drought-adapted species. A lack of researched propagation protocols makes commercial production of many species difficult. We examined germination of three native plant species (Purshia stansburiana, Cercocarpus ledifolius, and Forestiera pubescens) in three substrates. Both P. stansburiana and C. ledifolius are endemic to semiarid areas. Forestiera pubescens is found in riparian areas but is drought hardy once established. Stratified seed of each were sown in substrates varying in organic matter (OM) content and water-holding porosity (WHP) characteristics: (1) a commercial germination mix (83% OM); (2) a self-blended combination of a commercial potting soil mixed volumetrically 1:1 with vermiculite (37% OM); and (3) a calcined clay (0% OM). Germination was monitored for 60 days. Percent germination was highest in the calcined clay for each species evaluated (P. stansburiana: 63%, C. ledifolius: 51% and F. pubescens: 83%). These rates were at least 25% greater than the next best medium, the self-blended substrate. The commercial germination blend was the least favorable for germination. These results suggest that the common commercial practice of using germination substrates may not be suited to germinating many species native to arid areas.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2545
Author(s):  
Kaitlynn Lavallee ◽  
Pushpa Gautam Soti ◽  
Hansapani Rodrigo ◽  
Rupesh Kariyat ◽  
Alexis Racelis

The incorporation of native plant species is central to restoration efforts, but this is often limited by both the availability of seeds and the relatively low viability and germination rates of commercially available seeds. Although pre-sowing treatments are commonly used to improve germination rates of seeds, the efficacy of these treatments is found to vary across species. In this study, we tested how four pre-sow treatments (physical scarification, acid scarification, cold stratification, and aerated hydropriming) affected the viability and seed germination rates of 12 commercially available plant species native to south Texas and commonly used in restoration efforts. Our results show that the viability of the seeds have a wide range, from 78% to 1.25%. Similarly, the total germination rate ranged from 62% to 0%. We found that pre-sowing treatments accelerated the germination rate in 9 of 12 plant species tested, but the effect varied by treatment. Collectively, our results identify various methods to achieve the best germination rates for native plants of south Texas, to help improve restoration efforts across the region.


2015 ◽  
Vol 16 (2) ◽  
pp. 87-95 ◽  
Author(s):  
N. Grant-Hoffman ◽  
S. Parr ◽  
T. Blanke

2017 ◽  
Vol 18 (3) ◽  
pp. 227-234
Author(s):  
Jessica D Lubell ◽  
Bryan Connolly ◽  
Kristina N Jones

Rhodora ◽  
10.3119/18-11 ◽  
2019 ◽  
Vol 121 (987) ◽  
pp. 159
Author(s):  
Adam J. Ramsey ◽  
Steven M. Ballou ◽  
Jennifer R. Mandel

Sign in / Sign up

Export Citation Format

Share Document