scholarly journals Survival of SSG, an Endophytic Burkholderia Biocontrol Agent, on the Boxwood Leaf Surface

2021 ◽  
Vol 39 (4) ◽  
pp. 138-142
Author(s):  
Ping Kong

Abstract Survival of Burkholderia cepacia complex (Bcc)-based biocontrol agents (BCA) has been associated with their field performance for foliage disease control. SSG, a strain of boxwood endophytic Bcc, suppresses a broad spectrum of plant foliage diseases, including boxwood blight, but the control efficacy declines over time. Factors affecting SSG survival on leaf surfaces were investigated to promote the application of the BCA for boxwood blight management. ‘Justin Brouwers' boxwood plants were treated with SSG cells at 107 to 108 colony-forming unit (CFU)·ml−1, maintained in a moist chamber at 10, 20, or 30 C (50, 68, 86 F), and sampled after the inoculum was blow-dried at 0, 3, 6, 12, and 24 h after treatment. The retained cells per leaf at 0 hours was 105 to 106 CFU, but only less than 10% of the cells survived 24 h after application, irrespective of the wet period and temperature. A wet condition of 12 and 24 h at 20 and 30 C facilitated SSG survival on the second day. Further survival of SSG was affected by temperature but not wetness. Damp conditions and pleasant temperatures can improve bacteria survival and stability and are keys to promoting BCA field applications. Index words: Biocontrol agent, endophyte, survival on plant surfaces, temperature, wetness. Species used in this study: Bacterium strain, SSG (Burkholderia sp);Plant species: Buxus sempervirens L. ‘Justin Brouwers'.

2020 ◽  
Vol 8 (2) ◽  
pp. 310 ◽  
Author(s):  
Ping Kong ◽  
Chuanxue Hong

Calonectria pseudonaviculata (Cps) poses an increasing threat to boxwood, a major nursery crop and iconic landscape plant worldwide. Here, we report on a potent biocontrol agent that produces small sage green (SSG) colonies on potato dextrose agar. SSG is a bacterial strain recovered from Justin Brouwers boxwood leaves with unusual response to Cps inoculation. Water-soaked symptoms developed on leaves 2 days after inoculation then disappeared a few days later. This endophyte affected several major steps of the boxwood blight disease cycle. SSG at 107 cfu/mL lysed all conidia in mixed broth culture. SSG at 108 cfu/mL reduced blight incidence by >98% when applied one day before or 3 h after boxwood were inoculated with Cps. Its control efficacy decreased with decreasing bacterial concentration to 103 cfu/mL and increasing lead time up to 20 days. When applied on diseased leaf litter under boxwood plants, SSG reduced Cps sporulation and consequently mitigated blight incidence by 90%. SSG was identified as a new member of the Burkholderia cepacia complex with distinct characters from known clinical strains. With these protective, curative, and sanitizing properties, this Burkholderia endophyte offers great promise for sustainable blight management at production and in the landscape.


2020 ◽  
Vol 9 (1) ◽  
pp. 51
Author(s):  
Min Yi Wong ◽  
Yuan-Hsi Tseng ◽  
Tsung-Yu Huang ◽  
Bor-Shyh Lin ◽  
Chun-Wu Tung ◽  
...  

Burkholderia cepacia complex (BCC) is a group of closely related bacteria with widespread environmental distribution. BCC bacteria are opportunistic pathogens that cause nosocomial infections in patients, especially cystic fibrosis (CF). Multilocus sequence typing (MLST) is used nowadays to differentiate species within the BCC complex. This study collected 41 BCC isolates from vascular access infections (VAIs) and other clinical infections between 2014 and 2020. We preliminarily identified bacterial isolates using standard biochemical procedures and further conducted recA gene sequencing and MLST for species identification. We determined genetic diversity indices using bioinformatics software. We studied 14 isolates retrieved from patients with VAIs and observed that Burkholderia cepacia was the predominant bacterial species, and B. contaminans followed by B. cenocepacia were mainly retrieved from patients with other infections. According to MLST data, we identified that all B. contaminans isolates belonged to ST102, while a wide variety of sequence types (STs) were found in B. cenocepacia isolates. In summary, the high diversity and easy transmission of BCC increase BCC infections, which provides insights into their potential clinical effects in non-CF infections.


2013 ◽  
Vol 41 (11) ◽  
pp. 1038-1042 ◽  
Author(s):  
Maria Beatriz Souza Dias ◽  
Larissa G.T. Cavassin ◽  
Valeska Stempliuk ◽  
Luciene S. Xavier ◽  
Renata D. Lobo ◽  
...  

2013 ◽  
Vol 31 (10) ◽  
pp. 665-668 ◽  
Author(s):  
Laura Barrado ◽  
M. Teresa Martinez ◽  
Jennifer Villa ◽  
M. Ángeles Orellana ◽  
Esther Viedma ◽  
...  

2002 ◽  
Vol 70 (5) ◽  
pp. 2715-2720 ◽  
Author(s):  
Karen K. Chu ◽  
Donald J. Davidson ◽  
T. Keith Halsey ◽  
Jacqueline W. Chung ◽  
David P. Speert

ABSTRACT Cystic fibrosis patients infected with strains from different genomovars of the Burkholderia cepacia complex can experience diverse clinical outcomes. To identify genomovar-specific determinants that might be responsible for these differences, we developed a pulmonary model of infection in BALB/c mice. Mice were rendered leukopenic by administration of cyclophosphamide prior to intranasal challenge with 1.6 × 104 bacteria. Five of six genomovar II strains persisted at stable numbers in the lungs until day 16 with minimal toxicity, whereas zero of seven genomovar III strains persisted but resulted in variable toxicity. We have developed a chronic pulmonary model of B. cepacia infection which reveals differences among genomovars in terms of clinical infection outcome.


2003 ◽  
Vol 18 (2) ◽  
Author(s):  
M.L. Garlaschi ◽  
L. Cariani ◽  
M. Busetti ◽  
E. Grasso ◽  
P. Grassi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document