scholarly journals Low Error Rate Data Transmission in Cognitive Radio Networks

2017 ◽  
Vol 13 (10) ◽  
pp. 5899-5904
Author(s):  
A. Narendra Kumar

Cognitive Radio (CR) has become a hopeful technology to enhance the spectrum  utilization  through spectrum sharing between licensed user (primary user) and unlicensed user (secondary user). An vital rule mandated for the development of such frameworks are to develop solutions that don’t require any changes to the existing primary user (PU) infrastructure. An Orthogonal Frequency Division Multiplexing (OFDM) is typically worn advancements in present wireless communication systems which has the possibility of fulfilling the demand for cognitive radios intrinsically or with slight changes. In this paper, Space time block codes is used. The various antennas used on both ends for trustworthy data broadcast and interference nulling schemes. These codes can accomplish full broadcast diversification determined via the number of broadcast antennas. The MIMO is worn for enhancing the power of a wireless link, to determine the issue for lower BER and achieve a superior performance.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251509
Author(s):  
Dong Qin

This paper proposes an adaptive power allocation and subcarrier pairing algorithm for orthogonal frequency division multiplexing based decode and forward cognitive radio networks, where primary and secondary users achieve spectrum sharing in the same frequency band. The secondary network tries to maximize its sum rate while ensuring that the interference introduced to the primary network is below an acceptable level. Although similar problems have been investigated in traditional cooperative communication networks, it’s still an open issue in cognitive radio networks due to interference thresholds. The power consumed by the secondary network is not only limited by its own power peak, but also by the interference threshold of the primary user. Our proposed algorithm not only allocates power and pairs subcarriers reasonably, but also specifies the conditions under which the relaying link is superior to the direct transmission. Simulation results show that the sum rate of the proposed algorithm exceeds other methods and obtains a significant performance gain.


The faster development of wireless communications has made the spectrum ending up with increasingly with more shortage. The idea of CR was proposed to meet the problem of spectrum effectiveness. In the cognitive networks, the SUs are permitted to detect, distinguish and access the frequency bands that are not at present used by the PU’s. the SU’s must outfit with the spectrum access information to use the primary user’s licence in the home region network. We propose a maximum throughput and power based cognitive radio for home region systems (HAN). At the point when there are different SU’s and numerous channels, spectrum sharing must be taken into account. In this paper we additionally propose a system of multiple channel sensing. We consider the interference to PU brought about by the dynamic access and the erroneous spectrum sensing technique. We investigate the obstruction brought about by the secondary user’s through a reestablishment hypothesis. Under the limitation of interference to primary user, the queuing theory is used to overcome this issue and to obtain the higher data rate of SU’s. finally, it is demonstrated that the cyclostationary detection method can be improved when extra channels are accessible.


Game Theory ◽  
2017 ◽  
pp. 487-502
Author(s):  
Sungwook Kim

A cognitive radio is an intelligent radio that can be programmed and configured dynamically. Its transceiver is designed to use the best wireless channels in its vicinity. Such a radio automatically detects available channels in the wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless communications in a given spectrum band at one location. This process is a form of dynamic spectrum management. In recent years, the development of intelligent, adaptive wireless devices called cognitive radios, together with the introduction of secondary spectrum licensing, has led to a new paradigm in communications: cognitive networks. Cognitive networks are wireless networks that consist of several types of users: often a primary user and secondary users. These cognitive users employ their cognitive abilities to communicate without harming the primary users. The study of cognitive networks is relatively new and many questions are yet to be answered. This chapter furthers the study.


Author(s):  
Usama Mir ◽  
Leila Merghem-Boulahia ◽  
Dominique Gaïti

In modern day wireless networks, spectrum utilization and allocation are static. Generally, static spectrum allocation is not a feasible solution considering the distributed nature of wireless devices, thus some alternatives must be ensured in order to allocate spectrum dynamically and to mitigate the current spectrum scarcity. An effective solution to this problem is cognitive radio (CR), which seeks the empty spectrum portions and shares them with the neighboring devices. The CR devices can utilize the available spectrum more efficiently if they try to work together. Therefore, in this work, we review a number of dynamic spectrum allocation techniques, especially those using multiagent systems and game-theoretical approaches, and investigate their applicability to CR networks. The distributed nature of these two domains makes them suitable for CR networks. In fact, the idea of dynamic spectrum sharing using these techniques is not entirely new and several interesting approaches already exist in literature. Thus, in our study we try to focus on existing spectrum sharing literature and cooperative multiagent system for CR networks. We are particularly interested in showing how the distributed nature of multiagent system can be combined with cognitive radios in order to alleviate the current static spectrum usage as well as maintaining cooperation amongst the CR nodes. Moreover, our work includes the description of various scenarios in which spectrum sharing is an essential factor and hence must be performed in a dynamic and opportunistic manner. We also explain the working of our proposed spectrum allocation approach using multiagent system cooperation in one of these scenarios and verify its formal behavior using Petri net modeling.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4142
Author(s):  
Peiyuan Si ◽  
Weidang Lu ◽  
Kecai Gu ◽  
Xin Liu ◽  
Bo Li ◽  
...  

As wireless communication technology keeps progressing, people’s requirements for wireless communication quality are getting higher and higher. Wireless communication brings convenience, but also causes some problems. On the one hand, the traditional static and fixed spectrum allocation strategy leads to high wastefulness of spectrum resources. The direction of improving the utility of spectrum resources by combining the advantages of cooperative communication and cognitive radio has attracted the attention of many scholars. On the other hand, security of communication is becoming an important issue because of the broadcasting nature and openness of wireless communication. Physical-layer security has been brought into focus due to the possibility of improving the security in wireless communication. In this paper, we propose an anti-wiretap spectrum-sharing scheme for cooperative cognitive radio communication systems which can secure the information transmission for the two transmission phases of the cooperative communication. We maximized the secondary system transmission rate by jointly optimizing power and bandwidth while ensuring the primary system achieves its secrecy transmission rate. Useful insights of the proposed anti-wiretap spectrum-sharing scheme are given in the simulation results. Moreover, several system parameters are shown to have a big impact for the simulation results.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kedir Mamo Besher ◽  
Juan-Ivan Nieto-Hipolito ◽  
Mabel Vazquez Briseno ◽  
Raymundo Buenrostro Mariscal

After an introduction of cognitive radio (CR) technology in communication, the hot research topics are sensing, Primary User Interference (PUI), spectrum management, security, spectrum sharing, and environmental sensing. Among the listed, sensing and Primary User Interference are the bold ones. The base query for these two problems lays finding a means for which and what channel at a particular time is available and avoiding interference with Primary Users (PU). This article presents a novel cognitive radio algorithm called SenPUI for both mentioned main challenges, sensing and PUI. First, energy scan during the inactive portion of communication which is dynamic is done. Second, application packet based primary user identification for PUI avoidance is proposed as base solution. Both techniques described in this work are implemented and resulted in a significant reduction of the target problems estimated around 10-30% reduction in average. Main limitations of Wireless Sensor Network (WSN) such as memory, battery lifetime, and size are considered during the design and implementation of our solutions.


2020 ◽  
Vol 12 (4) ◽  
pp. 575-583
Author(s):  
V. Sharma ◽  
S. Joshi

Cognitive Radio is a boon to efficient utilization of spectrum to meet the demand of next generation. Spectrum Sensing (SS) is an active research area, essential to meet the requirement of efficient spectrum utilization as it detects the vacant bands. This paper develops a Hybrid Blind Detection (HBD) technique for cooperative spectrum sensing which combines the Energy Detector (ED) and the Anti-Eigen Value Detection (AVD) techniques together to enhance the detection accuracy of a cognitive radio. Collaboration among the cognitive users is achieved to reduce the error and hard fusion based detection is implemented to detect the existence of primary user. The detection accuracy of the design is evaluated with respect to detection probabilities and the results are examined for improvements with the traditional two stage detection techniques. Fusion rules for the cooperative environment are implemented and compared to detect majority rule suitable for the proposed design.


Cognitive radio automatically detects the available channel in the wireless communication and has an adaptive radio technology network. It also changes the transmission parameters to run concurrently for more smooth communication. CR network allows the user to utilize the band in an opportunistic manner because it has different characteristics like capabilities and re-configurability. In this article, it shown the methodology, on how the primary user and the secondary user should communicate to provide error free communication. And also the framework on how to overcome the unique challenges occurred in the spectrum management like interference avoidance, QoS awareness and seamless communication. We also discussed about spectrum mobility, spectrum sharing, spectrum decision, and also spectrum sensing which are the characteristics of spectrum management


2021 ◽  
Author(s):  
Hamad Yahya ◽  
Emad Alsusa ◽  
Arafat Al-Dweik

<div>The synergy of nonorthogonal multiple access (NOMA) and cognitive radio (CR) can provide efficient spectrum utilization for future wireless networks and enable supporting heterogeneous quality of service (QoS) requirements. In this context, this article aims at evaluating the throughput of a downlink CR-NOMA network where the secondary user (SU) data is opportunistically multiplexed with the primary user (PU) data using power-domain NOMA. The data multiplexing process is constrained by the PU QoS requirements. The multiplexing process can be considered seamless with respect to the PU because its receiver design will generally remain unchanged. Moreover, we consider the case where the SU detects its own data by blindly identifying the adopted transmission mode (TM) at the base station, which can be PU orthogonal multiple access PU-OMA, SU-OMA, PU/SU-NOMA, and no transmission. Consequently, the network can be classified as a hybrid underlay-interweave. The detection process is considered blind because the SU does not receive side information about the adopted TM. The obtained analytical results corroborated by Monte Carlo simulation results show that the proposed CR-NOMA network can provide substantial throughput improvement over conventional NOMA networks, particularly at low signal-to-noise ratios (SNRs) because the unutilized PU spectrum can be used by the SU. Moreover, in good channel conditions the PU can tolerate some interference from the SU, which may improve the channel utilization significantly. </div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document