Paul Dirac’s view of the Theory of Elementary Waves

2017 ◽  
Vol 13 (3) ◽  
pp. 4731-4734
Author(s):  
Jeffrey Boyd

Is science open to a new idea? Thomas Kuhn says paradigm shifts sound like gibberish to scientificleaders, and are rejected for that reason. The Theory of Elementary Waves (TEW) is such an idea:quantum particles follow waves moving in the opposite direction. Time always goes forwards. Wefocus on Paul Dirac’s 1930 book The Principles of Quantum Mechanics, applied to TEW. We keepDirac notation and quantum math but replace the picture of how nature is organized. Waveinterference and probabilistic effects occur prior to particle emission. Wave function collapse occursat emission & there is no further interference. We have launched a successful program of teachingthis form of physics in the format of YouTube music videos of five minutes duration. Some of ourvideos have been watched 40,000 times: within YouTube search for “Jeffrey H Boyd” to watch theseamusing videos including one in which Yoda (from Star Wars) solves what Richard Feynman calledthe “Fundamental Mystery of Quantum Mechanics.”

2015 ◽  
Vol 7 (3) ◽  
pp. 1916-1922
Author(s):  
Jeffrey H Boyd

Wave particle duality is a mistake. Another option was neither conceived nor debated, which is a better foundation for quantum mechanics. The Theory of Elementary Waves (TEW) is based on the idea that particles follow zero energy waves backwards. A particle cannot be identical with its wave if they travel in opposite directions. TEW is the only form of local realism that is consistent with the results of the experiment by Aspect, Dalibard and Roger (1982). Here we show that 1. although QM teaches that complementarity in a double slit experiment cannot be logically explained, TEW explains it logically, without wave function collapse, and 2. gives an unconventional explanation of the Davisson Germer experiment. 3. There is empirical evidence for countervailing waves and particles and 4. zero energy waves. 5. TEW clarifies our understanding of probability amplitudes and supports quantum math. 6. There is an untested experiment for which TEW and wave particle duality predict different outcomes. If TEW is valid, then wave particle duality is not necessary for quantum math, which is the most accurate and productive science ever. With a more solid foundation, new vistas of science open, such as the study of elementary waves.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345013 ◽  
Author(s):  
MILTON A. DA SILVA ◽  
ROBERTO M. SERRA ◽  
LUCAS C. CÉLERI

We analyze the wave function collapse as seen by two distinct observers (with identical detectors) in relative motion. Imposing that the measurement process demands information transfer from the system to the detectors, we note that although different observers will acquire different amount of information from their measurements due to correlations between spin and momentum variables, all of them will agree about the orthogonality of the outcomes, as defined by their own reference frame. So, in this sense, such a quantum mechanical postulate is observer invariant, however the effective efficiency of the measurement process differs for each observer.


2009 ◽  
Vol 21 (02) ◽  
pp. 155-227 ◽  
Author(s):  
RODERICH TUMULKA

The Ghirardi–Rimini–Weber (GRW) theory is a physical theory that, when combined with a suitable ontology, provides an explanation of quantum mechanics. The so-called collapse of the wave function is problematic in conventional quantum theory but not in the GRW theory, in which it is governed by a stochastic law. A possible ontology is the flash ontology, according to which matter consists of random points in space-time, called flashes. The joint distribution of these points, a point process in space-time, is the topic of this work. The mathematical results concern mainly the existence and uniqueness of this distribution for several variants of the theory. Particular attention is paid to the relativistic version of the GRW theory that was developed in 2004.


2019 ◽  
Vol 15 ◽  
pp. 6039-6055
Author(s):  
Antonio Puccini

We learn from Quantum Mechanics that the observation of the microscopic world, the measurement (M) of a quantum object, i.e. a particle, inexorably modifies the physical system we wish to examine. What happens is that with the M it takes place a reduction of the state vectors, that is the ‘wave function collapse’ of the measured particle. Why does it happen? No one knows. The enigma of the so-called Measurement Paradox, in our opinion, could be solved if we considered that the light quantum(LQ), as suggested by the Principle of Equivalence Mass-Energy, carries out a dynamic-mass equivalent to its energy. The LQ is indispensable to carry out a M.  No M can be carried out without using the quantum of light. Calculus show that a photon of the optic band hits an electron with a momentum bigger than the mass of the electron itself. This may explain why the M induces the implosion of the quantum object observed, together with the collapse of its wave function, giving rise to the Measurement Paradox.


2015 ◽  
Vol 10 (9) ◽  
pp. 3828-3839
Author(s):  
Jeffrey H. Boyd

Why is quantum mathematics (QM) the only science based on probability amplitudes rather than probabilities? A paradigm shift called the Theory of Elementary Waves (TEW) posits zero energy waves traveling in the opposite direction as particles, which a particle follows backwards: like a probabilistic guidance system emanating from detectors. Probability amplitudes are the mathematical analog of these elementary rays. Although this proposal might sound like gibberish, that is the hallmark of a paradigm shift. Thomas Kuhn warns that previous paradigm shifts were rejected because they sounded like gibberish. TEW is internally coherent, explains a mountain of empirical data, and resolves insoluble problems of QM. For example, it dispenses with the need for wavefunction collapse because probability decisions are made at the particle source, not the detector. It is the only local realistic theory consistent with the Bell test experiments. That which QM calls “nonlocality,” TEW calls “elementary rays.” One term is vague, the other involves elegant mathematics. This article introduces that mathematical notation, explains complementarity in double slit experiments, and reinterprets Feynman diagrams. QM and TEW are partners that need each other. One is a science of observables; the other a science of how nature works independent of the observer.


1993 ◽  
Vol 46 (1) ◽  
pp. 77 ◽  
Author(s):  
DT Pegg

Wave function collapse has been a contentious concept in quantum mechanics for a considerable time. Here we show examples of how the concept can be used to advantage in predicting the statistical results of three experiments in atomic physics and quantum optics: photon antibunching, single-photon phase difference states and interrupted single-atom fluorescence. We examine the question of whether or not collapse is 'really' a physical process, and discuss the consequences of simply omitting it but including the observer as a part of the overall system governed by the laws of quantum mechanics. The resulting entangled world does not appear to be inconsistent with experience.


2015 ◽  
Vol 10 (3) ◽  
pp. 2774-2783
Author(s):  
Jeffrey H. Boyd

This article proposes solutions to two riddles of quantum mechanics (QM): (1) What is the physical analog of a quantum amplitude?, (2) Why do electrons in a double slit experiment act differently if we look at them? The Theory of Elementary Waves (TEW) is an unconventional view of how nature is organized. Elementary ray amplitudes precede and travel in the opposite direction as particles, which then follow these amplitudes backwards. The amplitude A = |A| eiθ is a vector in Hilbert space, but it moves through Euclidean space. This makes explicit something implicit in Feynman’s thinking, although Feynman had the amplitudes traveling in the wrong direction. In double slit experiments, the amplitude of elementary rays going though the two slits interfere before they reach the electron gun. Any experiment that detects which slit the electron uses, destroys the coherence of those two rays, destroying the interference. Because there is no interference, the target screen displays no interference fringe pattern. TEW represents a paradigm shift of seismic proportions, in both classical and quantum physics. Thomas Kuhn warns that paradigm shifts of this magnitude are usually rejected as preposterous. That is exactly what happened to Alfred Wegener’s idea of “continental drift.”


2012 ◽  
Vol 27 (12) ◽  
pp. 1230014 ◽  
Author(s):  
STEPHEN D. H. HSU

I give a brief introduction to many worlds or "no wave function collapse" quantum mechanics, suitable for non-specialists. I then discuss the origin of probability in such formulations, distinguishing between objective and subjective notions of probability.


Sign in / Sign up

Export Citation Format

Share Document