scholarly journals Can Quantum Mechanics and Relativity be considered per se complete? - A discussion on Quantum Mechanics and Relativity in Full Space-time Domain

2018 ◽  
Vol 14 (1) ◽  
pp. 5232-5236
Author(s):  
Yuanjie Li ◽  
Lihong Zhang ◽  
Peng Dong

This paper points out the incompleteness of the traditional quantum mechanics and relativity, which is embodied in space-time domains of definition, not in physical quantities for description. The real time and space are not continuous. The phenomena called “ghost-like long-range action” by Einstein in fact occur in the time discontinuity points, that is, Time Quantum Worm Holes put forward by Hawking. This paper also gives an essential difference between the macroscopic random motion and the microscopic random motion, which is critical for understanding wave-particle duality.

Author(s):  
Vo Van Thuan ◽  
Dao Dinh Duc

Due to helical cylindrical time-evolution of electrons the mankind observation at a quantum mechanical scale depends on synchronization between observers and their surrounding cosmological medium by collective dynamics. From one side, the synchronization leads to linearization of an embedded 4D space-time reminiscent of the flat Minkowski space-time. From another side, variation of the synchronization due to independent proper plane wave oscillations of each electron being constrained in a short time quantized period, implies that there only statistical averaged physical quantities are observable, which is in consistency with statistical indeterministic concept of traditional quantum mechanics.


2016 ◽  
pp. 4101-4114
Author(s):  
Guoqiu Zhao

In dual-four-dimensional space-time quantum mechanics, the spin of micro object is caused by the rotation of field matter sphere itself. In its own frame of reference, the radius is defined as the static Compton momentum R0=ħ/m0c,and frequency is ν0=E0/h. In the Dynamic frame of reference, the radius is defined as the dynamic Compton momentum R1=ħ/mc,and frequency is ν1=E1/h. m0 and m is the static and dynamic mass of a micro matter sphere, respectively. The electron spin s and spin magnetic moment both can be calculated by the field matter sphere model. If the frame of reference is in the complex space-time, and we observe the motion in a Minkowshi Space, then there will be a dual four dimensional complex space-time. The fluctuation motion of field matter is De Broglie matter wave.


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 189
Author(s):  
Diego A. R. Dalvit ◽  
Wilton J. M. Kort-Kamp

Temporal modulation of the quantum vacuum through fast motion of a neutral body or fast changes of its optical properties is known to promote virtual into real photons, the so-called dynamical Casimir effect. Empowering modulation protocols with spatial control could enable the shaping of spectral, spatial, spin, and entanglement properties of the emitted photon pairs. Space–time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties. Here, we report the mechanical analog of this phenomenon by considering systems in which the lattice structure undergoes modulation in space and in time. We develop a microscopic theory that applies both to moving mirrors with a modulated surface profile and atomic array meta-mirrors with perturbed lattice configuration. Spatiotemporal modulation enables motion-induced generation of co- and cross-polarized photon pairs that feature frequency-linear momentum entanglement as well as vortex photon pairs featuring frequency-angular momentum entanglement. The proposed space–time dynamical Casimir effect can be interpreted as induced dynamical asymmetry in the quantum vacuum.


2007 ◽  
Vol 22 (32) ◽  
pp. 6243-6251 ◽  
Author(s):  
HRVOJE NIKOLIĆ

The conserved probability densities (attributed to the conserved currents derived from relativistic wave equations) should be nonnegative and the integral of them over an entire hypersurface should be equal to one. To satisfy these requirements in a covariant manner, the foliation of space–time must be such that each integral curve of the current crosses each hypersurface of the foliation once and only once. In some cases, it is necessary to use hypersurfaces that are not spacelike everywhere. The generalization to the many-particle case is also possible.


1999 ◽  
Vol 54 (1) ◽  
pp. 11-32 ◽  
Author(s):  
Berthold-Georg Englert

Abstract Two-way interferometers with which-way detectors are not only of importance in physical research, they are also a useful teaching device. A number of basic issues can be illustrated and discussed, even at the level of undergraduate teaching. Among these issues are: the physical meaning of a state vector; entangled systems; Einstein-Podolsky-Rosen correlations; statistical operators and the as-if realities associated with them; quantum erasure; Schrödinger's cat; and, finally, wave-particle duality.


2018 ◽  
Vol 64 (1) ◽  
pp. 18
Author(s):  
G. Gómez ◽  
I. Kotsireas ◽  
I. Gkigkitzis ◽  
I. Haranas ◽  
M.J. Fullana

Weintend to use the description oftheelectron orbital trajectory in the de Broglie-Bohm (dBB) theory to assimilate to a geodesiccorresponding to the General Relativity (GR) and get from itphysicalconclusions. ThedBBapproachindicatesustheexistenceof a non-local quantumfield (correspondingwiththequantumpotential), anelectromagneticfield and a comparativelyveryweakgravitatoryfield, togetherwith a translationkineticenergyofelectron. Ifweadmitthatthosefields and kineticenergy can deformthespace time, according to Einstein'sfield equations (and to avoidtheviolationoftheequivalenceprinciple as well), we can madethehypothesisthatthegeodesicsof this space-time deformation coincide withtheorbitsbelonging to thedBBapproach (hypothesisthat is coherentwiththestabilityofmatter). Fromit, we deduce a general equation that relates thecomponentsofthemetric tensor. Thenwe find anappropriatemetric for it, bymodificationofanexactsolutionofEinstein'sfield equations, whichcorresponds to dust in cylindricalsymmetry. Thefoundmodelproofs to be in agreementwiththebasicphysicalfeaturesofthehydrogenquantum system, particularlywiththeindependenceoftheelectronkineticmomentum in relationwiththeorbit radius. Moreover, themodel can be done Minkowski-like for a macroscopicshortdistancewith a convenientelectionof a constant. According to this approach, theguiding function ofthewaveontheparticlecould be identifiedwiththedeformationsofthespace-time and thestabilityofmatterwould be easilyjustifiedbythe null accelerationcorresponding to a geodesicorbit.


2019 ◽  
Vol 2 (2) ◽  

Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown.


Sign in / Sign up

Export Citation Format

Share Document