scholarly journals Revolutionary Approach for Fusion of the Classic, Relativity and Quantum field Theories: Sayed’s Acceleration Equation and Probable Violation of E=mc2

2021 ◽  
Vol 19 ◽  
pp. 134-141
Author(s):  
Sayed A. El-Mongy

Expansion of the universe is a divine fact in the glorious Quran. The accelerated expansion of the universe is one of the physics mysteries and challenges. This article is a try to find an answer to this ambiguity. A simple fusion and merging of the Newton, Einstein and quantum field equations were carried out to clarify this topic. Innovative equations correlating the acceleration (As), cosmological constant (Ʌ), vacuum energy density (ρ) and distance (d) was deduced. It can be concluded that Sayed`s acceleration constant (As) is proportional to (Ʌ/ρ), (1/8mc2) and (1/πd2). The derivative equation reveals a probable violation of the mass-energy formula (E= mc2); the speed of light might be 12.5% more. This disparity may be due to antimatter contribution; neutrino-antineutrino, β-β+ annihilation and/or a predicted unrecognized very light particle in the atom nucleus. The Sayed`s acceleration constant (As) and (As/Ʌ) ratio were calculated and found to be 6.33825x10-8 m/s2 and 5.7620475x10+44 m3/s2 respectively. Using Sayed`s equations, the calculated acceleration in planck scale is matched with the declared 5.56081x1051 m/s2 value. The The calculated recession velocity at 1 Mpc was found to be 6.5192677 x 108 m/s .and the cosmological constant (Ʌ) is as measured;~1.1x10-52 m-2

2021 ◽  
pp. 2150114
Author(s):  
Manuel Urueña Palomo ◽  
Fernando Pérez Lara

The vacuum catastrophe results from the disagreement between the theoretical value of the energy density of the vacuum in quantum field theory and the estimated one observed in cosmology. In a similar attempt in which the ultraviolet catastrophe was solved, we search for the value of the cosmological constant by brute-force through computation. We explore combinations of the fundamental constants in physics performing a dimensional analysis, in search of an equation resulting in the measured energy density of the vacuum or cosmological constant that is assumed to cause the accelerated expansion of the universe.


2015 ◽  
Vol 30 (22) ◽  
pp. 1540033 ◽  
Author(s):  
Steven D. Bass

The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


2002 ◽  
Vol 17 (05) ◽  
pp. 295-302
Author(s):  
SUBENOY CHAKRABORTY

In this paper it is shown that the present accelerated expansion of the Universe can be explained only by considering variation of the speed of light, without taking into account the cosmological constant or quintessence matter.


2011 ◽  
Vol 03 ◽  
pp. 195-202
Author(s):  
M. D. MAIA

The concept of deformation of Riemannian geometry is reviewed, with applications to gravitation and cosmology. Starting with an analysis of the cosmological constant problem, it is shown that space-times are deformable in the sense of local change of shape. These deformations leave an observable signature in the space-time, characterized by a conserved tensor, associated with a tangent acceleration, defined by the extrinsic curvature of the space-time. In the applications to cosmology, we find that the accelerated expansion of the universe is the observable effect of the deformation, dispensing with the cosmological constant and its problems.


2008 ◽  
Vol 23 (06) ◽  
pp. 909-917 ◽  
Author(s):  
K. D. PUROHIT ◽  
YOGESH BHATT

A five-dimensional FRW-type Kaluza–Klein cosmological model is taken to study the role of extra dimension in the expansion of the universe. Relation between scale factors corresponding to conventional four dimensions and the extra dimension has been established. Field equations are solved in order to find out the effect of pressure corresponding to these scale factors. Conditions for accelerated expansion are derived.


2015 ◽  
Vol 70 (11) ◽  
pp. 905-911 ◽  
Author(s):  
Carlos Blanco-Pérez ◽  
Antonio Fernández-Guerrero

AbstractWe propose a model of expansion of the universe in which a minimal, ‘quantised’ rate is dependent upon the value of the cosmological constant Λ in Einstein’s field equations, itself not a constant but a function of the size and the entropy of the universe. From this perspective, we offer an expression which relates Hubble’s constant with the cosmological constant.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 108
Author(s):  
Vesselin Gueorguiev ◽  
Andre Maeder

A new perspective on the Cosmological Constant Problem (CCP) is proposed and discussed within the multiverse approach of Quantum Cosmology. It is assumed that each member of the ensemble of universes has a characteristic scale a that can be used as integration variable in the partition function. An averaged characteristic scale of the ensemble is estimated by using only members that satisfy the Einstein field equations. The averaged characteristic scale is compatible with the Planck length when considering an ensemble of solutions to the Einstein field equations with an effective cosmological constant. The multiverse ensemble is split in Planck-seed universes with vacuum energy density of order one; thus, Λ˜≈8π in Planck units and a-derivable universes. For a-derivable universe with a characteristic scale of the order of the observed Universe a≈8×1060, the cosmological constant Λ=Λ˜/a2 is in the range 10−121–10−122, which is close in magnitude to the observed value 10−123. We point out that the smallness of Λ can be viewed to be natural if its value is associated with the entropy of the Universe. This approach to the CCP reconciles the Planck-scale huge vacuum energy–density predicted by QFT considerations, as valid for Planck-seed universes, with the observed small value of the cosmological constant as relevant to an a-derivable universe as observed.


2014 ◽  
Vol 92 (2) ◽  
pp. 168-172 ◽  
Author(s):  
V. Fayaz ◽  
H. Hossienkhani ◽  
A. Aghamohammadi ◽  
M. Amirabadi

A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the universe. In this model, we develop the general scheme for modified f(R) gravity reconstruction from realistic anisotropic Bianchi type I cosmology. Power-law volumetric expansion is used to obtain exact solutions of the field equations. We discuss the physical behavior of the solutions and anisotropy behavior of the fluid, the expansion parameter, and the model in future evolution of the universe. We reconstruct corresponding f(R) gravities and obtain the equation of state parameter. We show that the corresponding f(R) gravity of the ghost dark energy model can behave like phantom or quintessence of the selected models that describe accelerated expansion of the universe.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 65-72
Author(s):  
JORGE ALFARO

We study a model of the gravitational field based on two symmetric tensors. The equations of motion of test particles are derived. We explain how the Equivalence principle is recovered. Outside matter, the predictions of the model coincide exactly with General Relativity, so all classical tests are satisfied. In Cosmology, we get accelerated expansion without a cosmological constant.


Sign in / Sign up

Export Citation Format

Share Document