Thermo-mechanical and wetting behavior of modified SnAg3.5eutectic solder alloy

2015 ◽  
Vol 7 (3) ◽  
pp. 1939-1951 ◽  
Author(s):  
Abu Bakr El-Bediwi

Effects of adding bismuth content on structure, thermo-mechanical and wetting behavior of SnAg3.5 eutectic alloy have been investigated. Matrix structure of SnAg3.5 eutectic alloy, such as crystallinity, crystal size and lattice parameters, changed after adding bismuth content which effect on all measured properties. Melting temperature of SnAg3.5 eutectic alloy decreased after adding bismuth content. Elastic modulus and contact angle of SnAg3.5 eutectic alloy varied after adding bismuth content. The Sn66.5Ag3.5Bi30alloy has the best solder properties for electronic applications such as lower melting temperature, contact angle and elastic modulus.

2018 ◽  
Vol 206 ◽  
pp. 03005
Author(s):  
Bin Hou ◽  
Fengmei Liu ◽  
Hongqin Wang ◽  
Yupeng Zhang ◽  
Jianglong Yi ◽  
...  

In order to explore the effect of addition of mixed rare earths (MRE) on the wetting behavior and interfacial reaction between Sn-0.70Cu-0.05Ni solder and amorphous Fe84.3Si10.3B5.4 alloy, 0.25 wt.% percentage of the MRE, which are mainly elements La and Ce, were added into the solder. Results show it can refine the microstructure of the solder alloy, and there is limited change of melting temperature with the addition of MRE in the solder. The wettability of the solder on amorphous substrate is improved by adding 0.25 wt.% percentage of the MRE into Sn-0.70Cu-0.05Ni solder. Moreover, research results indicate that, with the increase of wetting temperature, the final equilibrium wetting angles of Sn-0.70Cu-0.05Ni and Sn-0.70Cu-0.05Ni-0.25MRE on amorphous substrate decrease gradually, indicating the better wettability at the higher wetting temperature. In addition, with the increase of temperature, the distribution of intermetallic compound (IMC) FeSn2 formed at the interface between the two solders and amorphous substrate is changed from discontinuous state to continuous state. The thickness of the interfacial IMC layer between solder and amorphous substrates reduced with the addition of MRE, indicating that the presence of 0.25 wt.% percentage of the MRE is effective in suppressing the growth of IMC layer.


Alloy Digest ◽  
1981 ◽  
Vol 30 (1) ◽  

Abstract CERROLOW-147 Alloy is a bismuth-base non-eutectic alloy that melts over the narrow, low-temperature range of 142-149 F (61-65 C). It has a slightly lower melting temperature than CERROBEND Alloy (Alloy Digest Bi-6, August 1978) and functions about as well for the same uses if its small freezing range is not objectionable. Cerrolow-147 Alloy provides engineers and technicians with an easily castable material that is ready for use as soon as it freezes. It is highly suitable in industry for such uses as anchoring parts for machining and support for bending tubing and extrusions. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, forming, heat treating, and machining. Filing Code: Bi-21. Producer or source: Cerro Metal Products.


2016 ◽  
Vol 857 ◽  
pp. 22-25 ◽  
Author(s):  
Mohd Noor Ervina Efzan ◽  
Mhd Nasir Nur Faziera

This paper reported the investigation on gallium, Ga addition into In-4.8Zn lead-free solder to improve its wettability performances. The effect of addition of Ga in In-4.8Zn solder alloy was studied. The results show with the addition of 0.5% Ga into the In-4.8Zn composition, the spreading area of In-4.8Zn-0.5Ga solder on copper increase between 35.71 and 43.75 %. Hence, as the spreading area increases, the contact angle decreased from between 22.09 to 39.71 %. Additionally, the addition of Ga as dopant increased the thickness of IMCs layer.


Alloy Digest ◽  
1981 ◽  
Vol 30 (5) ◽  

Abstract INDALLOY 136 is a bismuth-base, eutectic alloy that melts at 136 F (57.8 C). It is used widely in industry because of its low melting temperature and controlled-shrinkage characteristics. It provides the scientist, engineer and technician with an easily castable material that is ready for use soon after it freezes. The alloy can be recovered easily and recycled into new uses any number of times. Among its uses are anchoring parts for machining, proof casting and low-melting solder. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, heat treating, and machining. Filing Code: Bi-24. Producer or source: Indium Corporation of America.


Alloy Digest ◽  
1979 ◽  
Vol 28 (9) ◽  

Abstract CERROLOW-136 Alloy is a bismuth-base eutectic alloy that melts at 136 F (57.8 C), hence its identifying number. It is widely used in industry because of its low melting temperature and controlled-shrinkage characteristics. Among tis many applications are (1) Anchoring parts such as jet blades for machining, testing and inspection, (2) In the foundry for fusible cores in compound cores and (3) Low-melting solder. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, heat treating, and machining. Filing Code: Bi-13. Producer or source: Cerro Metal Products.


Alloy Digest ◽  
1978 ◽  
Vol 27 (10) ◽  

Abstract CERROLOW-117 Alloy is a bismuth-base eutectic alloy that melts at 117 F (47 C). Its low melting temperature and controlled-shrinkage characteristics make it very useful in industry for such applications as proof casting in tool and die shops, dental models and low-temperature solder. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, forming, heat treating, and machining. Filing Code: Bi-8. Producer or source: Cerro Metal Products.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 609
Author(s):  
Guangjie Feng ◽  
Manqin Liu ◽  
Yalei Liu ◽  
Zhouxin Jin ◽  
Yifeng Wang ◽  
...  

The wetting of Ag-5 wt.% CuO (Ag-5CuO) alloy on initial/CuO-coated zirconia toughened alumina (ZTA) composite ceramic in air was studied in detail. The results showed that the contact angle of the Ag-5CuO/ZTA system rapidly decreased from 81° at 970 °C to 45° at 990 °C during the heating process, however, moderate reductions in contact angle were observed in the subsequent heating and temperature holding stages. In comparison with the contact angle of pure Al2O3, an increment of about 4° of the stable contact angle of Ag-5CuO alloy on the heterogeneous ZTA was observed. The reaction between Al2O3 and CuO can reduce the damage of the CuO-rich liquid to ZrO2 in the ZTA substrate. Both oxygen and CuO were helpful in reducing the contact angle of Ag on ZTA and enhancing the bonding of the Ag/ZTA interface. The continuous CuO coating on ZTA and the monotectic liquid containing more CuO in the region near the triple line induced reductions of more than 40° and about 10° in the contact angle, respectively, between the initial and the CuO coating-improved wetting systems.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


Author(s):  
Cemal Basaran ◽  
Jianbin Jiang

Young’s modulus (E) values published in literature for the eutectic Pb37/Sn63 and near eutectic Pb40/Sn60 solder alloy vary significantly. One reason for this discrepancy is different testing methods for highly rate sensitive heterogeneous materials, like Pb/Sn alloys, yield different results. In this paper, we study different procedures used to obtain the elastic modulus; analytically, by single crystal elasticity and experimentally by ultrasonic testing and Nano indentation. We compare these procedures and propose a procedure for elastic modulus determination. The deformation kinetics of the Pb/Sn solder alloys is discussed at the grain size level.


Author(s):  
Neeharika Anantharaju ◽  
Mahesh Panchagnula ◽  
Wayne Kimsey ◽  
Sudhakar Neti ◽  
Svetlana Tatic-Lucic

The wettability of silicon surface hydrophobized using silanization reagents was studied. The advancing and receding contact angles were measured with the captive needle approach. In this approach, a drop under study was held on the hydrophobized surface with a fine needle immersed in it. The asymptotic advancing and receding angles were obtained by incrementally increasing the volume added and removed, respectively, until no change in angles was observed. The values were compared with the previously published results. Further, the wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The surfaces were prepared with the wet etching process and contain posts and holes of different sizes and void fractions. The surface geometry brought up a scope to study the Wenzel (filling of surface grooves) and Cassie (non filling of the surface grooves) theories and effects of surface geometry and roughness on the contact angle. Experimental data point to an anomalous behavior where the data does not obey either Wenzel or Cassie type phenomenology. This behavior is explained by an understanding of the contact line topography. The effect of contact line topography on the contact angle was thus parametrically studied. It was also inferred that, the contact angle increased with the increase in void fraction. The observations may serve as guidelines in designing surfaces with the desired wetting behavior.


Sign in / Sign up

Export Citation Format

Share Document