Realismo y teoría cuántica

Author(s):  
Antonio J. Diéguez

RESUMENLos resultados empíricos y los análisis teóricos en física cuántica ni apoyan ni refutan concluyentemente el realismo. Aunque se mostrara que la interpretación de Copenhague era la única viable de entre todas las posibles, todavía quedaría por probar que con eso se había conculcado cualquier tipo de realismo. Bohr mismo aceptaba un realismo con tintes kantianos y mostraba desagrado hacia el instrumentalismo de Heisenberg. Pero además de la interpretación de Copenhague existen interpretaciones rivales que, a pesar de no estar tan desarrolladas como aquélla, dejan abierto el camino al realismo en la física cuántica. En particular la interpretación de David Bohm.PALABRAS CLAVEREALISMO CIENTIFICO – TEORIA CUANTICA – LOCALIDADABSTRACTThe empirical achievements and theoretical analyses in quantum physics neither support nor refute conclusively realism. Even if it were shown that Copenhagen Interpretation is the only feasible one between all the possible interpretations in quantum mechanics, it would remain to prove that it forbids every kind of realism. In fact, Bohr himself accepted a realism with Kantian aspects and disagreed whith Heisenberg’s instrumentalism. But there are interpretations, rival to Copenhagen’s, which in spite of not being son developped, smooth the way for realism in quantum physics. Particularly David Bohm’s interpretation.KEYWORDSSCIENTIFIC REALISM – QUANTUM THEORY – LOCALITY

2021 ◽  
pp. 320-342
Author(s):  
Valia Allori

Quantum mechanics is a groundbreaking theory: it not only is extraordinarily empirically adequate but also is claimed to having shattered the classical paradigm of understanding the observer-observed distinction as well as the part-whole relation. This, together with other quantum features, has been taken to suggest that quantum theory can help one understand the mind-body relation in a unique way, in particular to solve the hard problem of consciousness along the lines of panpsychism. In this chapter, after having briefly presented panpsychism, Valia Allori discusses the main features of quantum theories and the way in which the main quantum theories of consciousness use them to account for conscious experience.


Author(s):  
Jan Faye

The Copenhagen interpretation is first and foremost associated with Niels Bohr's philosophy of quantum mechanics. In this paper, I attempt to lay out what I see as Bohr's pragmatic approach to science in general and to quantum physics in particular. A part of this approach is his claim that the classical concepts are indispensable for our understanding of all physical phenomena, and it seems as if the claim is grounded in his reflection upon how the evolution of language is adapted to experience. Another, recent interpretation, QBism, has also found support in Darwin's theory. It may therefore not be surprising that sometimes QBism is said to be of the same breed as the Copenhagen interpretation. By comparing the two interpretations, I conclude, nevertheless, that there are important differences.


2021 ◽  
Author(s):  
Alexey Kryukov

Abstract Quantum mechanics is the foundation of modern physics that is thought to be applicable to all physical phenomena, at least in principle. However, when applied to macroscopic bodies, the theory seems to be inconsistent. Wigner's friend and related thought experiments demonstrate that accounts by different observers described by the rules of quantum mechanics may be contradictory. Although still highly debated, such experiments seem to demonstrate an incompatibility of quantum mechanics with the usual rules of logic. Alternatively, one of the hidden assumptions in the thought experiments must be wrong. For instance, the argument is invalidated if macroscopic observers cannot be considered as physical systems described by the rules of quantum theory. Here we prove that there is a way to apply the rules of quantum mechanics to macroscopic observers while avoiding contradictory accounts of measurement by the observers. The key to this is the random noise that is ever present in nature and that represents the uncontrollable part of interaction between measured system and the surroundings in classical and quantum physics. By exploring the effect of the noise on microscopic and macroscopic bodies, we demonstrate that accounts of Wigner, the friend and other agents all become consistent. Our result suggests that the existing attempts to modify the Schrodinger equation to account for measurement results may be misguided. More broadly, the proposed mechanism for modeling measurements underlies the phenomenon of decoherence and is shown to be sufficient to explain the transition to Newtonian physics in quantum theory.


Quanta ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Andrea Oldofredi ◽  
Michael Esfeld

Paul Dirac has been undoubtedly one of the central figures of the last century physics, contributing in several and remarkable ways to the development of quantum mechanics; he was also at the centre of an active community of physicists, with whom he had extensive interactions and correspondence. In particular, Dirac was in close contact with Bohr, Heisenberg and Pauli. For this reason, among others, Dirac is generally considered a supporter of the Copenhagen interpretation of quantum mechanics. Similarly, he was considered a physicist sympathetic with the positivistic attitude which shaped the development of quantum theory in the 1920s. Against this background, the aim of the present essay is twofold: on the one hand, we will argue that, analyzing specific examples taken from Dirac's published works, he can neither be considered a positivist nor a physicist methodologically guided by the observability doctrine. On the other hand, we will try to disentangle Dirac's figure from the mentioned Copenhagen interpretation, since in his long career he employed remarkably different—and often contradicting—methodological principles and philosophical perspectives with respect to those followed by the supporters of that interpretation.Quanta 2019; 8: 68–87.


Author(s):  
Mara Beller

One of the most influential scientists of the twentieth century, the Danish physicist Niels Bohr founded atomic quantum theory and the Copenhagen interpretation of quantum physics. This radical interpretation renounced the possibility of a unified, observer-independent, deterministic description in the microdomain. Bohr’s principle of complementarity – the heart of the Copenhagen philosophy – implies that quantum phenomena can only be described by pairs of partial, mutually exclusive, or ‘complementary’ perspectives. Though simultaneously inapplicable, both perspectives are necessary for the exhaustive description of phenomena. Bohr aspired to generalize complementarity into all fields of knowledge, maintaining that new epistemological insights are obtained by adjoining contrary, seemingly incompatible, viewpoints.


Scientific realism has traditionally maintained that our best scientific theories can be regarded as more or less true and as representing the world as it is (more or less). However, one of our very best current theories—quantum mechanics—has famously resisted such a realist construal, threatening to undermine the realist stance altogether. The chapters in this volume carefully examine this tension and the reasons behind it, including the underdetermination generated by the multiplicity of formulations and interpretations of quantum physics, each presenting a different way the world could be. Authors in this volume offer a range of alternative ways forward: some suggest new articulations of realism, limiting our commitments in one way or another; others attempt to articulate a ‘third way’ between traditional forms of realism and antirealism, or are critical of such attempts. Still others argue that quantum theory itself should be reconceptualised, or at least alternative formulations should be considered in the hope of evading the problems faced by realism. And some examine the nature of these issues when moving beyond quantum mechanics to quantum field theory. Taken together they offer an exciting new set of perspectives on one of the most fundamental questions in the philosophy of modern physics: how can one be a realist about quantum theory, and what does this realism amount to?


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Eduardo Simões

The objective of this article is to demonstrate how the historical debate between materialism and idealism, in the field of Philosophy, extends, in new clothes, to the field of Quantum Physics characterized by realism and anti-realism. For this, we opted for a debate, also historical, between the realism of Albert Einstein, for whom reality exists regardless of the existence of the knowing subject, and Niels Bohr, for whom we do not have access to the ultimate reality of the matter, unless conditioning it to the existence of an observer endowed with rationality, position adopted in the Interpretation of Complementarity (1927) – posture that was expanded in 1935 when Bohr assumed a “relationalist” conception, according to which the quantum state is defined by the relationship between the quantum object and the entire measuring device. This is an extremely important debate, as it further consolidates the results of nascent Quantum Mechanics, guaranteeing Bohr the leadership of the orthodoxy based on the interpretation of complementarity. Here, when dealing with Quantum Theory, we will not make any distinction between the terms Quantum Physics, Quantum Theory or Quantum Mechanics. The entire discussion will be held under the name “Quantum Theory”. Theory that tries to analyze and describe the behavior of physical systems of reduced dimensions, close to the sizes of molecules, atoms and subatomic particles. We hope that the reader will appreciate the genius of these two titans in this field of Physics when they magnificently formulate the arguments that support the object of their defenses.


2018 ◽  
Vol 5 (2) ◽  
pp. 183-199 ◽  
Author(s):  
Han Zhao ◽  
Liang Feng

Abstract The establishment of non-Hermitian quantum mechanics (such as parity–time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to complex quantum potentials, photonics provides an ideal platform for the visualization of many conceptually striking predictions from non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT-symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT-symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT-symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, biochemical sensing and healthcare are also discussed.


2021 ◽  
Vol 21 (2) ◽  
pp. 332-348
Author(s):  
Eduardo Simões

The objective of this article is to demonstrate how the historical debate between materialism and idealism, in the field of Philosophy, extends, in new clothes, to the field of Quantum Physics characterized by realism and anti-realism. For this, we opted for a debate, also historical, between the realism of Albert Einstein, for whom reality exists regardless of the existence of the knowing subject, and Niels Bohr, for whom we do not have access to the ultimate reality of the matter, unless conditioning it to the existence of an observer endowed with rationality, position adopted in the Interpretation of Complementarity (1927) – posture that was expanded in 1935 when Bohr assumed a “relationalist” conception, according to which the quantum state is defined by the relationship between the quantum object and the entire measuring device. This is an extremely important debate, as it further consolidates the results of nascent Quantum Mechanics, guaranteeing Bohr the leadership of the orthodoxy based on the interpretation of complementarity. Here, when dealing with Quantum Theory, we will not make any distinction between the terms Quantum Physics, Quantum Theory or Quantum Mechanics. The entire discussion will be held under the name “Quantum Theory”. Theory that tries to analyze and describe the behavior of physical systems of reduced dimensions, close to the sizes of molecules, atoms and subatomic particles. We hope that the reader will appreciate the genius of these two titans in this field of Physics when they magnificently formulate the arguments that support the object of their defenses.


Author(s):  
V. E. Shapiro

The theorem presented challenges the quantum mechanics and its relativistic theory generally posited as an ultimate unifying guideline of nature in fundamental and applied matters, refutes this theory, any bridges from it to the realm. We build the evidence on the rigorous statistical criteriaand arguments of compatibility at the interfaces not adduced previously against the theory. It calls in question the Born rule, particle-wave doublethink, probability sense of the quantum theory, any bridges from the theory to both Lagrangian and nonholonomic mechanics. The argumentation given to the matter of ambient noise impact at the interfaces by meaningful statistical methods paves the way towards the correct principles of causality, connectedness, robustness .


Sign in / Sign up

Export Citation Format

Share Document