scholarly journals Einstein’s Local Realism vs. Bohr’s Instrumental Anti-Realism: The Debate Between Two Titans in the Quantum Theory Arena

2021 ◽  
Vol 21 (2) ◽  
pp. 332-348
Author(s):  
Eduardo Simões

The objective of this article is to demonstrate how the historical debate between materialism and idealism, in the field of Philosophy, extends, in new clothes, to the field of Quantum Physics characterized by realism and anti-realism. For this, we opted for a debate, also historical, between the realism of Albert Einstein, for whom reality exists regardless of the existence of the knowing subject, and Niels Bohr, for whom we do not have access to the ultimate reality of the matter, unless conditioning it to the existence of an observer endowed with rationality, position adopted in the Interpretation of Complementarity (1927) – posture that was expanded in 1935 when Bohr assumed a “relationalist” conception, according to which the quantum state is defined by the relationship between the quantum object and the entire measuring device. This is an extremely important debate, as it further consolidates the results of nascent Quantum Mechanics, guaranteeing Bohr the leadership of the orthodoxy based on the interpretation of complementarity. Here, when dealing with Quantum Theory, we will not make any distinction between the terms Quantum Physics, Quantum Theory or Quantum Mechanics. The entire discussion will be held under the name “Quantum Theory”. Theory that tries to analyze and describe the behavior of physical systems of reduced dimensions, close to the sizes of molecules, atoms and subatomic particles. We hope that the reader will appreciate the genius of these two titans in this field of Physics when they magnificently formulate the arguments that support the object of their defenses.

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Eduardo Simões

The objective of this article is to demonstrate how the historical debate between materialism and idealism, in the field of Philosophy, extends, in new clothes, to the field of Quantum Physics characterized by realism and anti-realism. For this, we opted for a debate, also historical, between the realism of Albert Einstein, for whom reality exists regardless of the existence of the knowing subject, and Niels Bohr, for whom we do not have access to the ultimate reality of the matter, unless conditioning it to the existence of an observer endowed with rationality, position adopted in the Interpretation of Complementarity (1927) – posture that was expanded in 1935 when Bohr assumed a “relationalist” conception, according to which the quantum state is defined by the relationship between the quantum object and the entire measuring device. This is an extremely important debate, as it further consolidates the results of nascent Quantum Mechanics, guaranteeing Bohr the leadership of the orthodoxy based on the interpretation of complementarity. Here, when dealing with Quantum Theory, we will not make any distinction between the terms Quantum Physics, Quantum Theory or Quantum Mechanics. The entire discussion will be held under the name “Quantum Theory”. Theory that tries to analyze and describe the behavior of physical systems of reduced dimensions, close to the sizes of molecules, atoms and subatomic particles. We hope that the reader will appreciate the genius of these two titans in this field of Physics when they magnificently formulate the arguments that support the object of their defenses.


Author(s):  
Eric Scerri

In chapter 7, the influence of the old quantum theory on the periodic system was considered. Although the development of this theory provided a way of reexpressing the periodic table in terms of the number of outer-shell electrons, it did not yield anything essentially new to the understanding of chemistry. Indeed, in several cases, chemists such as Irving Langmuir, J.D. Main Smith, and Charles Bury were able to go further than physicists in assigning electronic configurations, as described in chapter 8, because they were more familiar with the chemical properties of individual elements. Moreover, despite the rhetoric in favor of quantum mechanics that was propagated by Niels Bohr and others, the discovery that hafnium was a transition metal and not a rare earth was not made deductively from the quantum theory. It was essentially a chemical fact that was accommodated in terms of the quantum mechanical understanding of the periodic table. The old quantum theory was quantitatively impotent in the context of the periodic table since it was not possible to even set up the necessary equations to begin to obtain solutions for the atoms with more than one electron. An explanation could be given for the periodic table in terms of numbers of electrons in the outer shells of atoms, but generally only after the fact. But when it came to trying to predict quantitative aspects of atoms, such as the ground-state energy of the helium atom, the old quantum theory was quite hopeless. As one physicist stated, “We should not be surprised . . . even the astronomers have not yet satisfactorily solved the three-body problem in spite of efforts over the centuries.” A succession of the best minds in physics, including Hendrik Kramers, Werner Heisenberg, and Arnold Sommerfeld, made strenuous attempts to calculate the spectrum of helium but to no avail. It was only following the introduction of the Pauli exclusion principle and the development of the new quantum mechanics that Heisenberg succeeded where everyone else had failed.


2021 ◽  
Author(s):  
Alexey Kryukov

Abstract Quantum mechanics is the foundation of modern physics that is thought to be applicable to all physical phenomena, at least in principle. However, when applied to macroscopic bodies, the theory seems to be inconsistent. Wigner's friend and related thought experiments demonstrate that accounts by different observers described by the rules of quantum mechanics may be contradictory. Although still highly debated, such experiments seem to demonstrate an incompatibility of quantum mechanics with the usual rules of logic. Alternatively, one of the hidden assumptions in the thought experiments must be wrong. For instance, the argument is invalidated if macroscopic observers cannot be considered as physical systems described by the rules of quantum theory. Here we prove that there is a way to apply the rules of quantum mechanics to macroscopic observers while avoiding contradictory accounts of measurement by the observers. The key to this is the random noise that is ever present in nature and that represents the uncontrollable part of interaction between measured system and the surroundings in classical and quantum physics. By exploring the effect of the noise on microscopic and macroscopic bodies, we demonstrate that accounts of Wigner, the friend and other agents all become consistent. Our result suggests that the existing attempts to modify the Schrodinger equation to account for measurement results may be misguided. More broadly, the proposed mechanism for modeling measurements underlies the phenomenon of decoherence and is shown to be sufficient to explain the transition to Newtonian physics in quantum theory.


The article discusses a new understanding of the reality in the 20th century. Since the key figure in these changes was the Danish physicist Niels Bohr, we refer to his early and later articles to analyze the use of the term “reality”. Through an analysis of the terms, it is shown that Bohr describes discoveries in earlier articles that are inconsistent with old concepts in physics, and it is these questions that will further lead him to a new understanding of reality. In the article we also indicate how many times and in what contexts the term “reality” is used. Further, we find that the term “reality” is more common in later articles than in his earlier works (Copenhagen’s interpretation of quantum theory had not yet been formulated at the time of writing the early works). Through the analyzing of usage of certain terms, we show how the emphasis in the early and late Bohr’s articles shifts. For many years, the Danish physicist has sought to clarify quantum theory. In some later articles, we note that the problems affect not only physical, but also other areas of knowledge. We also analyze the use of the term in later articles. This analysis shows how Niels Bohr’s discoveries in the nature of the objects of the micro-world lead him to questions about the nature of reality. How discoveries in the microcosm affect the new conception of reality is best traced in controversy with other physicists. As the most striking example, we took the article “Discussion with Einstein on epistemological problems in atomic physics”. In this article, Bohr describes the specific behavior of micro-objects, features of physical experiments and proves the idea that a fundamentally new (including ontological plan) understanding of physical processes is needed. An analysis of the terms shows that, from Bohr’s point of view, reality itself is as described by its quantum mechanics. We strive to show the evolution of Bohr’s views in the context of how they influenced the revision of all physics. We conclude that the discovery of stationary states in an atom is the first step to rethinking philosophical questions of a nature of reality.


2019 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Koshun Suto

Bohr’s quantum condition is an indispensable assumption for classical quantum theory. However, strictly speaking, Bohr's quantum condition does not hold when deriving the energy of an electron forming a hydrogen atom from the perspective of the theory of relativity. In this paper, it is thought that the relationship enfolded in Bohr's quantum condition, i.e.,  is suitable as a new quantum condition to replace Bohr’s quantum condition. Also, in quantum mechanics, the energy of an electron is derived based on the theory of relativity, as exemplified in the theory of Sommerfeld. However, this paper points out that the previous energy formula based on the theory of relativity is mistaken. It also proposes a previously unknown formula for the kinetic energy of an electron.


Author(s):  
Mara Beller

One of the most influential scientists of the twentieth century, the Danish physicist Niels Bohr founded atomic quantum theory and the Copenhagen interpretation of quantum physics. This radical interpretation renounced the possibility of a unified, observer-independent, deterministic description in the microdomain. Bohr’s principle of complementarity – the heart of the Copenhagen philosophy – implies that quantum phenomena can only be described by pairs of partial, mutually exclusive, or ‘complementary’ perspectives. Though simultaneously inapplicable, both perspectives are necessary for the exhaustive description of phenomena. Bohr aspired to generalize complementarity into all fields of knowledge, maintaining that new epistemological insights are obtained by adjoining contrary, seemingly incompatible, viewpoints.


Scientific realism has traditionally maintained that our best scientific theories can be regarded as more or less true and as representing the world as it is (more or less). However, one of our very best current theories—quantum mechanics—has famously resisted such a realist construal, threatening to undermine the realist stance altogether. The chapters in this volume carefully examine this tension and the reasons behind it, including the underdetermination generated by the multiplicity of formulations and interpretations of quantum physics, each presenting a different way the world could be. Authors in this volume offer a range of alternative ways forward: some suggest new articulations of realism, limiting our commitments in one way or another; others attempt to articulate a ‘third way’ between traditional forms of realism and antirealism, or are critical of such attempts. Still others argue that quantum theory itself should be reconceptualised, or at least alternative formulations should be considered in the hope of evading the problems faced by realism. And some examine the nature of these issues when moving beyond quantum mechanics to quantum field theory. Taken together they offer an exciting new set of perspectives on one of the most fundamental questions in the philosophy of modern physics: how can one be a realist about quantum theory, and what does this realism amount to?


1989 ◽  
Vol 04 (24) ◽  
pp. 2329-2337 ◽  
Author(s):  
H. KLEINERT

We point out that there is a natural geometric procedure for constructing the quantum theory of a particle in a general metric-affine space with curvature and torsion. Quantization rules are presented and expressed in the form of a simple path integral formula which specifies compactly a new combined equivalence and correspondence principle. The associated Schrödinger equation has no extra curvature nor torsion terms that have plagued earlier attempts. Several well-known physical systems are invoked to suggest the correctness of the proposed theory.


2018 ◽  
Vol 5 (2) ◽  
pp. 183-199 ◽  
Author(s):  
Han Zhao ◽  
Liang Feng

Abstract The establishment of non-Hermitian quantum mechanics (such as parity–time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to complex quantum potentials, photonics provides an ideal platform for the visualization of many conceptually striking predictions from non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT-symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT-symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT-symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, biochemical sensing and healthcare are also discussed.


2019 ◽  
Author(s):  
Maxim Chistyakov

<p> This report considers the differences between the medical psychiatric and the psychotherapeutic (in particular, the psychodynamic) approaches to the diagnostics and treatment of mental disorders, and it describes a generalized model of the psychotherapeutic process. It traces the development of the relationship between the medical psychiatric and the psychotherapeutic approaches, which has resulted in different models of the interrelatedness of these paradigms in different countries (a unified model encompassing both the psychiatric and the psychotherapeutic approaches, and a model of two relatively independent approaches). Examples are provided of the difficulties and inconsistencies which have arisen from attempts to employ different variants of the unified model that purports to unify the two different approaches into a single whole. It is proposed that the medical psychiatric and the psychotherapeutic approaches should each be considered to have their own internal logic, independent from and simultaneously complementary to that of the other, in accordance with the principle of complementarity formulated by the physicist Niels Bohr in quantum mechanics for the systematization of irreconcilable data obtained by observers with differing perspectives. The author proposes that each patient with a mental disorder should be examined simultaneously and independently from the point of view of each of these systems of coordinates (the medical psychiatric paradigm and the psychotherapeutic paradigm).<br></p><p></p>


Sign in / Sign up

Export Citation Format

Share Document