Differential drought resistance strategies of co-existing woodland species enduring the long rainless Eastern Mediterranean summer

2019 ◽  
Vol 40 (3) ◽  
pp. 305-320 ◽  
Author(s):  
Päivi J Väänänen ◽  
Yagil Osem ◽  
Shabtai Cohen ◽  
José M Grünzweig

Abstract In anticipation of a drier climate and to project future changes in forest dynamics, it is imperative to understand species-specific differences in drought resistance. The objectives of this study were to form a comprehensive understanding of the drought resistance strategies adopted by Eastern Mediterranean woodland species, and to elaborate specific ecophysiological traits that can explain the observed variation in survival among these species. We examined leaf water potential (𝛹), gas exchange and stem hydraulics during 2–3 years in mature individuals of the key woody species Phillyrea latifolia L., Pistacia lentiscus L. and Quercus calliprinos Webb that co-exist in a dry woodland experiencing ~ 6 rainless summer months. As compared with the other two similarly functioning species, Phillyrea displayed considerably lower 𝛹 (minimum 𝛹 of −8.7 MPa in Phillyrea vs −4.2 MPa in Pistacia and Quercus), lower 𝛹 at stomatal closure and lower leaf turgor loss point (𝛹TLP ), but reduced hydraulic vulnerability and wider safety margins. Notably, Phillyrea allowed 𝛹 to drop below 𝛹TLP under severe drought, whereas the other two species maintained positive turgor. These results indicate that Phillyrea adopted a more anisohydric drought resistance strategy, while Pistacia and Quercus exhibited a more isohydric strategy and probably relied on deeper water reserves. Unlike the two relatively isohydric species, Phillyrea reached complete stomatal closure at the end of the dry summer. Despite assessing a large number of physiological traits, none of them could be directly related to tree mortality. Higher mortality was observed for Quercus than for the other two species, which may result from higher water consumption due to its 2.5–10 times larger crown volume. The observed patterns suggest that similar levels of drought resistance in terms of survival can be achieved via different drought resistance strategies. Conversely, similar resistance strategies in terms of isohydricity can lead to different levels of vulnerability to extreme drought.

2020 ◽  
Vol 19 (3) ◽  
pp. 159-165
Author(s):  
Peter Ferus ◽  
Dominika Bošiaková ◽  
Jana Konôpková ◽  
Peter Hoťka

Rhododendrons in numerous gardens in Central Europe are frequently endangered by adverse summer drought periods associated with the climate change. Therefore, in this work drought-resistance strategies in recent genotypes of these highly aesthetic shrubs were investigated. Dehydrated Rhododendron groenlandicum ‘Helma’, R. obtusum ‘Michiko’ and R. hybridum ‘Polarnacht’ showed high initial stomatal conductances (gS), after few days steeply falling to the stable minimum at ca. 20, 85 and 70% leaf relative water content (RWC), respectively. Except of ‘Polarnacht’, they had relatively large specific leaf area and ‘Michiko’ also free proline accumulation. On the other hand, R. repens ‘Scarlet Wonder’ and R. hybridum ‘Red Jack’ started with half gS values, continuously declining 1.5–2 fold longer compared to the first group of genotypes (RWC of ca. 60 and 75%, respectively). Both produced relatively thick leaves but did not show any osmotic adjustment. Among observed drought-resistance strategies, lower and longer period active transpiration with stomata sensitive to the water loss, as found in R. repens ‘Scarlet Wonder’ and R. × hybridum ‘Red Jack’, were accepted as the most effective for drought-affected rhododendron plantations.


1994 ◽  
Vol 119 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Douglas S. Chapman ◽  
Robert M. Augé

Understanding physiological drought resistance mechanisms in ornamentals may help growers and landscapers minimize plant water stress after wholesale production. We characterized the drought resistance of four potted, native, ornamental perennials: purple coneflower [Echinacea purpurea (L.) Moench], orange coneflower [Rudbeckia fulgida var. Sullivantii (Beadle & Boynt.) Cronq.], beebalm (Monarda didyma L.), and swamp sunflower (Helianthus angustifolius L.). We measured a) stomatal conductance of leaves of drying plants, b) lethal water potential and relative water content, and c) leaf osmotic adjustment during the lethal drying period. Maintenance of stomatal opening as leaves dry, low lethal water status values, and ability to osmotically adjust indicate relative drought tolerance, with the reverse indicating drought avoidance. Echinacea purpurea had low leaf water potential (ψL) and relative water content (RWC) at stomatal closure and low lethal ψL and RWC, results indicating high dehydration tolerance, relative to the other three species. Rudbeckia fulgida var. Sullivantii had a similar low ψL at stomatal closure and low lethal ψL and displayed relatively large osmotic adjustment. Monarda didyma had the highest ψL and RWC at stomatal closure and an intermediate lethal ψL, yet displayed a relatively large osmotic adjustment. Helianthus angustifolius became desiccated more rapidly than the other species, despite having a high ψL at stomatal closure; it had a high lethal ψL and displayed very little osmotic adjustment, results indicating relatively low dehydration tolerance. Despite differences in stomatal sensitivity, dehydration tolerance, and osmotic adjustment, all four perennials fall predominantly in the drought-avoidance category, relative to the dehydration tolerance previously reported for a wide range of plant species.


2019 ◽  
Vol 39 (8) ◽  
pp. 1428-1437 ◽  
Author(s):  
Zhicheng Chen ◽  
Shan Li ◽  
Junwei Luan ◽  
Yongtao Zhang ◽  
Shidan Zhu ◽  
...  

Abstract A growing body of evidence highlights the occurrence of increased widespread tree mortality during climate change-associated severe droughts; however, in situ long-term drought experiments with multispecies communities for the prediction of tree mortality and exploration of related mechanisms are rather limited in natural environments. We conducted a 7-year afforestation trial with 20 drought-resistant broadleaf tree species in an arid limestone habitat in northern China, where the species displayed a broad range of survival rates. The stomatal and xylem hydraulic traits of all the species were measured. We found that species’ stomatal closure points were strongly related to their xylem embolism resistance and xylem minimum water potential but not to their survival rates. Hydraulic failure of the vascular system appeared to be the main cause of tree mortality, and the stomatal safety margin was a better predictor of tree mortality than the traditionally considered xylem embolism resistance and hydraulic safety margin. We recommend the stomatal safety margin as the indicator for predicting drought-induced tree mortality and for selecting tree species in future forest restorations in arid regions.


1960 ◽  
Vol 38 (4) ◽  
pp. 597-599 ◽  
Author(s):  
O. Vaartaja

Seedlings of Picea glauca were grown for 2 months under three photoperiodic treatments. Short day treatment induced early terminal dormancy and resistance to severe drought treatment. Long day treatments, on the other hand, allowed prolonged growth of most seedlings and made them susceptible to drought.


Author(s):  
Martti Nissinen

This chapter lays the theoretical foundation of the book, defining prophecy as a non-technical, or inspired, form of divination, in which the prophet acts as an intermediary of divine knowledge. It is argued that prophecy is as much a scholarly construct as a historical phenomenon documented in Near Eastern, biblical, as well as Greek textual sources. The knowledge of the historical phenomenon depends essentially on the genre and purpose of the source material which, however, is very fragmentary and, due to its secondary nature, does not yield a full and balanced picture of ancient prophecy. The chapter also discusses the purpose of comparative studies, arguing that they are necessary, not primarily to reveal the influence of one source on the other, but to identify a common category of ancient Eastern Mediterranean prophecy.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
C. Alina Cansler ◽  
Sharon M. Hood ◽  
Phillip J. van Mantgem ◽  
J. Morgan Varner

Abstract Background Predictive models of post-fire tree and stem mortality are vital for management planning and understanding fire effects. Post-fire tree and stem mortality have been traditionally modeled as a simple empirical function of tree defenses (e.g., bark thickness) and fire injury (e.g., crown scorch). We used the Fire and Tree Mortality database (FTM)—which includes observations of tree mortality in obligate seeders and stem mortality in basal resprouting species from across the USA—to evaluate the accuracy of post-fire mortality models used in the First Order Fire Effects Model (FOFEM) software system. The basic model in FOFEM, the Ryan and Amman (R-A) model, uses bark thickness and percentage of crown volume scorched to predict post-fire mortality and can be applied to any species for which bark thickness can be calculated (184 species-level coefficients are included in the program). FOFEM (v6.7) also includes 38 species-specific tree mortality models (26 for gymnosperms, 12 for angiosperms), with unique predictors and coefficients. We assessed accuracy of the R-A model for 44 tree species and accuracy of 24 species-specific models for 13 species, using data from 93 438 tree-level observations and 351 fires that occurred from 1981 to 2016. Results For each model, we calculated performance statistics and provided an assessment of the representativeness of the evaluation data. We identified probability thresholds for which the model performed best, and the best thresholds with either ≥80% sensitivity or specificity. Of the 68 models evaluated, 43 had Area Under the Receiver Operating Characteristic Curve (AUC) values ≥0.80, indicating excellent performance, and 14 had AUCs <0.7, indicating poor performance. The R-A model often over-predicted mortality for angiosperms; 5 of 11 angiosperms had AUCs <0.7. For conifers, R-A over-predicted mortality for thin-barked species and for small diameter trees. The species-specific models had significantly higher AUCs than the R-A models for 10 of the 22 models, and five additional species-specific models had more balanced errors than R-A models, even though their AUCs were not significantly different or were significantly lower. Conclusions Approximately 75% of models tested had acceptable, excellent, or outstanding predictive ability. The models that performed poorly were primarily models predicting stem mortality of angiosperms or tree mortality of thin-barked conifers. This suggests that different approaches—such as different model forms, better estimates of bark thickness, and additional predictors—may be warranted for these taxa. Future data collection and research should target the geographical and taxonomic data gaps and poorly performing models identified in this study. Our evaluation of post-fire tree mortality models is the most comprehensive effort to date and allows users to have a clear understanding of the expected accuracy in predicting tree death from fire for 44 species.


2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Silvia Di Lodovico ◽  
Franco Gasparri ◽  
Emanuela Di Campli ◽  
Paola Di Fermo ◽  
Simonetta D’Ercole ◽  
...  

Background: An unbalanced skin microbiota due to an increase in pathogenic vs. commensal bacteria can be efficiently tackled by using prebiotics. The aim of this work was to identify novel prebiotic combinations by exerting species-specific action between S. aureus and S. epidermidis strains. Methods: First, the antimicrobial/antibiofilm effect of Xylitol-XYL and Galacto-OligoSaccharides–GOS combined with each other at different concentrations (1, 2.5, 5%) against S. aureus and S. epidermidis clinical strains was evaluated in time. Second, the most species-specific concentration was used to combine XYL with Fructo-OligoSaccharides–FOS, IsoMalto-Oligosaccharides–IMO, ArabinoGaLactan–LAG, inulin, dextran. Experiments were performed by OD600 detection, biomass quantification and LIVE/DEAD staining. Results: 1% XYL + 1% GOS showed the best species-specific action with an immediate antibacterial/antibiofilm action against S. aureus strains (up to 34.54% ± 5.35/64.68% ± 4.77) without a relevant effect on S. epidermidis. Among the other prebiotic formulations, 1% XYL plus 1% FOS (up to 49.17% ± 21.46/37.59% ± 6.34) or 1% IMO (up to 41.28% ± 4.88/36.70% ± 10.03) or 1% LAG (up to 38.21% ± 5.31/83.06% ± 5.11) showed antimicrobial/antibiofilm effects similar to 1% XYL+1% GOS. For all tested formulations, a prevalent bacteriostatic effect in the planktonic phase and a general reduction of S. aureus biofilm formation without loss of viability were recorded. Conclusion: The combinations of 1% XYL with 1% GOS or 1% FOS or 1% IMO or 1% LAG may help to control the balance of skin microbiota, representing good candidates for topic formulations.


2020 ◽  
Vol 71 (19) ◽  
pp. 6092-6106 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Si-Yan Chen ◽  
Qian-Qian Liu ◽  
...  

Abstract Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1359-1367 ◽  
Author(s):  
Carlos Saavedra ◽  
Donald T Stewart ◽  
Rebecca R Stanwood ◽  
Eleftherios Zouros

Abstract In each of the mussel species Mytilus edulis and M. trossulus there exist two types of mtDNA, the F type transmitted through females and the M type transmitted through males. Because the two species produce fertile hybrids in nature, F and M types of one may introgress into the other. We present the results from a survey of a population in which extensive hybridization occurs between these two species. Among specimens classified as “pure” M. edulis or “pure” M. trossulus on the basis of allozyme analysis, we observed no animal that carried the F or the M mitotype of the other species. In most animals of mixed nuclear background, an individual's mtDNA came from the species that contributed the majority of the individual's nuclear genes. Most importantly, the two mtDNA types in post-F1 male hybrids were of the same species origin. We interpret this to mean that there are intrinsic barriers to the exchange of mtDNA between these two species. Because such barriers were not noted in other hybridizing species pairs (many being even less interfertile than M. edulis and M. trossulus), their presence in Mytilus could be another feature of the unusual mtDNA system in this genus.


Behaviour ◽  
1989 ◽  
Vol 109 (3-4) ◽  
pp. 191-199 ◽  
Author(s):  
Nobuo Masataka ◽  
Kazuo Fujita

AbstractForaging vocalizations given by Japanese and rhesus momkeys reared by their biological mothers differed from each other in a single parameter. Calls made by a Japanese monkey fostered by a rhesus female were dissimilar to those of conspecifics reared by their biological mothers, but similar to those of rhesus monkeys reared by their biological mothers, and the vocalizations given by rhesus monkeys fostered by Japanese monkey mothers were dissimilar to those of conspecifics reared by their biological mothers, but similar to those of Japanese monkeys reared by their biological mothers. Playback experiments revealed that both Japanese and rhesus monkeys distinguished between the calls of Japanese monkeys reared by their biological mothers and of the cross-fostered rhesus monkeys on one hand, and the vocalizations of rhesus monkeys reared by their biological mothers and of the cross-fostered Japanese monkey on the other hand. Thus, production of species-specific vocalizations was learned by each species, and it was the learned species-difference which the monkeys themselves discriminated.


Sign in / Sign up

Export Citation Format

Share Document