Efficient root metabolism improves drought resistance of Festuca arundinacea

2019 ◽  
Vol 61 (3) ◽  
pp. 492-504 ◽  
Author(s):  
Dawid Perlikowski ◽  
Adam Augustyniak ◽  
Aleksandra Skirycz ◽  
Izabela Pawłowicz ◽  
Katarzyna Masajada ◽  
...  

Abstract Festuca arundinacea is a model to work on the mechanisms of drought resistance in grasses. The crucial components of that resistance still remain not fully recognized. It was suggested that deep root system could be a crucial trait for drought avoidance strategy but the other components of root performance under water deficit have not paid much attention of scientists. In this study, two genotypes of F. arundinacea with a different ability to withstand soil water deficit were selected to perform comprehensive research, including analysis of root architecture, phytohormones, proteome, primary metabolome and lipidome under progressive stress conditions, followed by a rewatering period. The experiments were performed in tubes, thus enabling undisturbed development of root systems. We demonstrated that long roots are not sufficient to perfectly avoid drought damage in F. arundinacea and to withstand adverse environmental conditions without a disturbed cellular metabolism (with respect to leaf relative water potential and cellular membrane integrity). Furthermore, we proved that metabolic performance of roots is as crucial as its architecture under water deficit, to cope with drought stress via avoidance, tolerance and regeneration strategies. We believe that the presented studies could be a good reference for the other, more applied experiments, in closely related species.

1994 ◽  
Vol 119 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Douglas S. Chapman ◽  
Robert M. Augé

Understanding physiological drought resistance mechanisms in ornamentals may help growers and landscapers minimize plant water stress after wholesale production. We characterized the drought resistance of four potted, native, ornamental perennials: purple coneflower [Echinacea purpurea (L.) Moench], orange coneflower [Rudbeckia fulgida var. Sullivantii (Beadle & Boynt.) Cronq.], beebalm (Monarda didyma L.), and swamp sunflower (Helianthus angustifolius L.). We measured a) stomatal conductance of leaves of drying plants, b) lethal water potential and relative water content, and c) leaf osmotic adjustment during the lethal drying period. Maintenance of stomatal opening as leaves dry, low lethal water status values, and ability to osmotically adjust indicate relative drought tolerance, with the reverse indicating drought avoidance. Echinacea purpurea had low leaf water potential (ψL) and relative water content (RWC) at stomatal closure and low lethal ψL and RWC, results indicating high dehydration tolerance, relative to the other three species. Rudbeckia fulgida var. Sullivantii had a similar low ψL at stomatal closure and low lethal ψL and displayed relatively large osmotic adjustment. Monarda didyma had the highest ψL and RWC at stomatal closure and an intermediate lethal ψL, yet displayed a relatively large osmotic adjustment. Helianthus angustifolius became desiccated more rapidly than the other species, despite having a high ψL at stomatal closure; it had a high lethal ψL and displayed very little osmotic adjustment, results indicating relatively low dehydration tolerance. Despite differences in stomatal sensitivity, dehydration tolerance, and osmotic adjustment, all four perennials fall predominantly in the drought-avoidance category, relative to the dehydration tolerance previously reported for a wide range of plant species.


2020 ◽  
Vol 19 (3) ◽  
pp. 159-165
Author(s):  
Peter Ferus ◽  
Dominika Bošiaková ◽  
Jana Konôpková ◽  
Peter Hoťka

Rhododendrons in numerous gardens in Central Europe are frequently endangered by adverse summer drought periods associated with the climate change. Therefore, in this work drought-resistance strategies in recent genotypes of these highly aesthetic shrubs were investigated. Dehydrated Rhododendron groenlandicum ‘Helma’, R. obtusum ‘Michiko’ and R. hybridum ‘Polarnacht’ showed high initial stomatal conductances (gS), after few days steeply falling to the stable minimum at ca. 20, 85 and 70% leaf relative water content (RWC), respectively. Except of ‘Polarnacht’, they had relatively large specific leaf area and ‘Michiko’ also free proline accumulation. On the other hand, R. repens ‘Scarlet Wonder’ and R. hybridum ‘Red Jack’ started with half gS values, continuously declining 1.5–2 fold longer compared to the first group of genotypes (RWC of ca. 60 and 75%, respectively). Both produced relatively thick leaves but did not show any osmotic adjustment. Among observed drought-resistance strategies, lower and longer period active transpiration with stomata sensitive to the water loss, as found in R. repens ‘Scarlet Wonder’ and R. × hybridum ‘Red Jack’, were accepted as the most effective for drought-affected rhododendron plantations.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
Song Ai Nio ◽  
Audry Agatha Lenak

Abstrak Penggulungan daun merupakan salah satu bentuk resistensi terhadap kekeringan atau lebih tepatnya mekanisme menghindari kekeringan pada tumbuhan monokotil. Mekanisme ini terjadi dengan cara menurunkan laju evapotranspirasi atau dengan meningkatkan absorpsi air pada tanah kering untuk mempertahankan potensial air daun tetap tinggi. Proses penggulungan daun ini berkaitan erat dengan peranan sel kipas. Pada saat kekurangan air, jumlah dan ukuran sel kipas meningkat, sehingga daun akan menggulung. Tingkat penggulungan daun dapat ditentukan secara visual berdasarkan sistem standar evaluasi untuk tanaman padi dengan memberi skor 1-9. Rendahnya tingkat penggulungan daun berkorelasi positif dengan meningkatnya potensial air daun. Kata kunci: menghindari kekeringan, penggulungan daun Abstract Leaf rolling is one mechanism of drought resistance, i.e. drought avoidance. This mechanism was resulted from decreasing evapotranspiration rate or increasing water absorption in the dry soil to maintain high leaf water potential. The process of leaf rolling in monocotyledon was closely related to the activity of bulliform cells. The number and size of bulliform cells were increased under water deficit, so that leaf rolling occurred. Leaf rolling score (1-9) could be visually determined based on the system of standard evaluation in rice. The low leaf rolling score was positively correlated with high leaf water potential. Keywords: drought avoidance, leaf rolling


Jurnal MIPA ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 79
Author(s):  
Audry Agatha Lenak ◽  
Song Ai Nio ◽  
Feky R. Mantiri ◽  
Susan Mambu

Ketersediaan air merupakan salah satu faktor pembatas produksi padi di Indonesia. Kajian sifat tahan kering pada padi lokal Sulawesi Utara (Sulut) perlu dilakukan, dalam upaya mendukung tercapainya tujuan strategis meningkatkan kemampuan wilayah Sulawesi untuk menjadi pilar ketahanan pangan nasional. Penelitian ini dilakukan untuk mengevaluasi sifat tahan kering pada empat varietas padi local Sulut (Burungan, Superwin, Temo dan Ombong) pada saat kekurangan air berdasarkan karakter penggulungan daun. Setelah 14 hari perlakuan, skor penggulungan daun pada tanaman yang diairi berkisar 3-4, sedangkan pada tanaman yang tidak diairi rata-rata 9. Pada perlakuan tidak diairi skor penggulungan daun terendah pada Superwin (7,26) dibandingkan pada Burungan (8,86), Temo (8,57) dan Ombong (8,85). Berdasarkan karakter skor penggulungan daun, sifat tahan kering Superwin lebih besar dibandingkan dengan ketiga padi lokal Sulut lainnya, sehingga varietas ini potensial untuk ditanam di daerah kekurangan air.Water availability is one factor limiting rice production in Indonesia. The evaluation of drought resistance in North Sulawesi local rice is important to elevate Sulawesi capability as food security supporter. This study was conducted to evaluate drought resistance in four local rice cultivars (Burungan, Superwin, Temo and Ombong) under water deficit condition based on the leaf rolling score. After 14 days of treatment, mean of leaf rolling score in well-watered plants was 3-4, whereas in water deficit plants was 9. Under water deficit, Superwin had the lowest score (7.26) compared with Burungan (8.86), Temo (8.57), and Ombong (8.85). Based on the leaf rolling score character, drought resistance in Superwin was larger than the other 3 local rice cultivars, so that Superwin was potential to be cultivated in the water limited area.


2021 ◽  
Vol 13 (5) ◽  
pp. 2923
Author(s):  
Botir Khaitov ◽  
Munisa Urmonova ◽  
Aziz Karimov ◽  
Botirjon Sulaymonov ◽  
Kholik Allanov ◽  
...  

Water deficiency restricts plant productivity, while excessive soil moisture may also have an adverse impact. In light of this background, field trials were conducted in secondary saline soil (EC 6.5 dS m−1) at the experimental station of Tashkent State Agrarian University (TSAU), Uzbekistan to determine drought tolerance of licorice (Glycyrrhiza glabra) by exposure to four levels of water deficit, namely control (70–80%), moderate (50–60%), strong (30–40%) and intense (10–20%) relative water content (WC) in the soil. The moderate drought stress exhibited positive effects on the morphological and physiological parameters of licorice, and was considered to be the most suitable water regime for licorice cultivation. Plant growth under the 50–60% WC treatment was slightly higher as compared to 70–80% WC treatment, exhibiting weak water deficit promotes licorice growth, root yield and secondary metabolite production. In particular, secondary metabolites i.e., ash, glycyrrhizic acid, extractive compounds and flavonoids, tended to increase under moderate water deficit, however further drought intensification brought a sharp decline of these values. These results contribute to the development of licorice cultivation technologies in arid regions and the most important consideration is the restoration of ecological and economical functions of the dryland agricultural system.


2017 ◽  
Vol 9 (11) ◽  
pp. 283 ◽  
Author(s):  
Renata V. Menezes ◽  
André D. Azevedo Neto ◽  
Hans R. Gheyi ◽  
Alide M. W. Cova ◽  
Hewsley H. B. Silva

Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels (0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species studied.


Genetics ◽  
2005 ◽  
Vol 172 (2) ◽  
pp. 1213-1228 ◽  
Author(s):  
Bing Yue ◽  
Weiya Xue ◽  
Lizhong Xiong ◽  
Xinqiao Yu ◽  
Lijun Luo ◽  
...  

2012 ◽  
Vol 152 (1) ◽  
pp. 104-118 ◽  
Author(s):  
M. DE A. SILVA ◽  
J. L. JIFON ◽  
J. A. G. DA SILVA ◽  
C. M. DOS SANTOS ◽  
V. SHARMA

SUMMARYThe relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.


2014 ◽  
Vol 34 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Fernando da S. Barbosa ◽  
Rubens D. Coelho ◽  
Rafael Maschio ◽  
Carlos J. G. de S. Lima ◽  
Everaldo M. da Silva

Soil water availability is the main cause of reduced productivity, and the early development period most sensitive to water deficit. This study aimed to evaluate the drought resistance of the varieties of sugar-cane RB867515 and SP81-3250 during the early development using different levels of water deficit on four soil depths. The experiment was conducted at the Department of Biosystems at Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP) in a greenhouse in soil classified as Oxisol, sandy loam texture (Series "Sertãozinho"). Once exhausted the level of available water in the soil, the dry strength of the studied strains are relatively low. Water balance with values less than -13 mm cause a significant decrease in the final population of plants, regardless of the variety, and values below -35 mm, leads to the death of all plants.


Sign in / Sign up

Export Citation Format

Share Document