scholarly journals An analysis of the resistance of an extended end-plate beam-to-beam connection subjected to tension in fire conditions

2019 ◽  
Vol 18 (1) ◽  
pp. 081-088
Author(s):  
Alina Słowikowska ◽  
Łukasz Polus

This paper presents an analysis of the fire resistance of a steel joint subject-ed to tension. The authors of this article used prescriptive rules and simple calculation models to present an impact of the value of the load on the fire resistance of the connection. Designers often evaluate the critical temperature and fire resistance time of steel elements. However, they neglect the evaluation of the above-mentioned values for steel connections. In this article a simple engineering method was used to calculate the fire resistance of the joint.

2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


1999 ◽  
Vol 26 (2) ◽  
pp. 156-167 ◽  
Author(s):  
D I Nwosu ◽  
VKR Kodur

A state-of-the-art review of the behaviour of steel frame structures in fire is presented. Results from different studies indicate that the behaviour of a complete structure is different from that of a single structural member under fire conditions from the point of view of fire resistance. Earlier studies also show that analysis and design of steel structures against fire based on their overall behaviour could lead to a reduction or the elimination of applied fire protection to certain structural members. The effects of continuity, restraint conditions, and load ratio on the fire resistance of frame structures are discussed. The beneficial aspects derived from considering overall structural rather than single-member behaviour in fire are illustrated through the analysis on two one-bay, one-storey, unprotected steel portal frames, a column, and a beam. Also comparison is made between the performance of a beam with different end restraints in fire. Results from the analyses indicate that the fire resistance of a member is increased when it is considered as part of a structure compared with when it is considered as a single member.Key words: steel, frames, fire resistance, buckling, loads, overall structural behaviour.


2010 ◽  
Vol 16 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Vytautas Papinigis ◽  
Edgaras Geda ◽  
Kęstutis Lukošius

There is a fire hazard in many civil buildings or engineering structures. Analysis of people evacuation time from the room or building is an important part of the designing process. Nevertheless, analysis of human behaviour in fire conditions is very complicated. Various factors should be evaluated, physical and even psychical, influencing safe evacuation of people from buildings. The analytical and calculating methods created are intended for analysis of people evacuation in fire conditions. Unfortunately, use of complicated calculations for determination of people evacuation requires too many resources; therefore, their application is limited. The calculation method for people evacuation presented in this paper is based on dependencies of the physical characteristics of people stream (density, intensity, movement speed) on people movement manner. The time required to evacuate people from people gathering room and building is determined in the numerical illustration of the method application. The article presents the comparison of simple calculation method and modeling with FDS+Evac software results of time for safe evacuation of people from rooms and buildings. Santrauka Daugelyje civiliniu pastatu ar inžineriniu statiniu kyla gaisro rizikos pavojus. Žmoniu evakuacijos laiko iš patalpos ar statinio analize yra svarbi projektavimo dalis. Tačiau žmoniu elgsenos gaisro salygomis analize yra labai sudetinga. Ivairūs fizikiniai ir netgi psichologiniai veiksniai, darantys itaka saugiai žmoniu evakuacijai iš statiniu, turi būti ivertinti. Išrasti analitiniai ir skaičiuojamieji metodai, skirti žmoniu evakuacijai gaisro salygomis analizuoti. Deja, sudetingu skaičiavimu metodu taikymas žmoniu evakuacijai nustatyti reikalauja pernelyg daug ištekliu, todel ju taikymas yra ribotas. Šiame straipsnyje pateikiamas žmoniu evakuacijos skaičiavimo metodas, paremtas fizikinemis žmoniu srauto charakteristikomis (tankiu, intensyvumu, judejimo greičiu), priklausomai nuo žmoniu judejimo būdo. Palyginti aprašyto ir sudetingojo žmoniu evakuacijos skaičiavimo metodu, naudojant FDS+Evac programine iranga, rezultatai.


2011 ◽  
Vol 374-377 ◽  
pp. 2176-2179 ◽  
Author(s):  
Hong Wei Ma ◽  
Michael C. H Yam

For ductile beam-to-column connectiosn in steel frame, beam local buckling is difficult and very costly to repair in any post-disaster reconstruction. Shape memory alloys (SMAs) in their austenite states have the ability to recover their original shape after experiencing large deformations. Steel connections retrofitted using SMAs can be endowed with intelligent characteristics. This paper investigates extended end-plate connections using long shank SMA bolts. The SMA connection is designed using a new methodology of avoiding beam local buckling and adopting the strong end-plate. The connection deformations are supposed to concentrate on the SMA bolts. In order to study the seismic behaviour of the connections, quasi-static tests were conducted on both the SMA connection specimens. The test results indicate that the connection can show high deformation capacity with the maximum interstory drift angles beyond 0.02 rad. However, the beam was remained elastic during test and the deformations of the SMA connection were recoverable upon unloading. The load-drift hysteresis loops are flag-shaped for the SMA connection. This indicates that the connection has moderate energy dissipating capacity.


2017 ◽  
Vol 26 (3) ◽  
pp. 109-119
Author(s):  
Paweł Roszkowski ◽  
Bartłomiej Sędłak ◽  
Paweł Sulik

Abstract In the paper, fire resistance of linear joints seal made of elastomer spacers under standard fire conditions, and thermal degradation range of EPDM elastomeric spacers are investigated. The geometry of elastomer spacer joints is important not only for their load capacity under normal conditions - thickness, width, and cavity depth can also influence fire resistance performance. Linear joints of different thicknesses and widths have been tested. The fire insulation and fire integrity were verified for various arrangements. Relatively low thermal degradation rates have been measured, given that EPDM is a combustible material.


2018 ◽  
Vol 1147 ◽  
pp. 24-29
Author(s):  
Jerneja Kolšek ◽  
Andrej Rebec

This paper presents the possible deviations between “realistic” (performance-based) calculations of fire resistance of steel structures and corresponding calculations made by one of the often used simplified (prescriptive) procedures of EN 1993-1-2 i.e. the method of critical temperature (MCT). The comparison is done for a case of an assembly consisting of a steel beam and a steel girder connected to each other by a bolted fin-plate connection. For such structure the MCT method suggests that the structural fire resistance is 50 minutes. However, the realistic fire resistance calculated by an advanced performance-based procedure is evaluated to 44 minutes. Although the discrepancy between the results of both methods is not significant in the presented case, this finding implies that MCT can be on the unsafe side for some cases. More future debates and clarifications are therefore encouraged regarding the actual limits of the applicability of the simplified procedures.


Sign in / Sign up

Export Citation Format

Share Document