Evaluation of three-dimensional kinematics of the distal portion of the forelimb in horses walking in a straight line

2004 ◽  
Vol 65 (4) ◽  
pp. 447-455 ◽  
Author(s):  
Henry Chateau ◽  
Christophe Degueurce ◽  
Jean-Marie Denoix
Author(s):  
M Zoghi ◽  
M S Hefzy ◽  
K C Fu ◽  
W T Jackson

The objective of this paper is to present a method to describe the three-dimensional variations of the geometry of the three portions forming the distal part of the human femur: the medial and lateral femoral condyles and the intercondylar fossa. The contours of equally spaced sagittal slices were digitized on the distal femur to determine its surface topography. Data collection was performed using a digitizer system which utilizes low-frequency, magnetic field technology to determine the position and orientation of a magnetic field sensor in relation to a specified reference frame. The generalized reduced gradient optimization method was used to reconstruct the profile of each slice utilizing two primitives: straight-line segments and circular arcs. The profile of each slice within the medial femoral condyle was reconstructed using two circular arcs: posterior and distal. The profile of each slice within the lateral femoral condyle was reconstructed using three circular arcs: posterior, distal and anterior. Finally, the profile of each slice within the intercondylar fossa was reconstructed using two circular arcs: proximal-posterior and anterior, and a distal-posterior straight-line segment tangent to the proximal-posterior circular arc. Combining the data describing the profiles of the different slices forming the distal femur, the posterior portions of each of the medial and lateral femoral condyles were modelled using parts of spheres having an average radius of 20 mm. The anterior portion of the lateral condyle was approximated to a right cylinder having its circular base parallel to the sagittal plane with an average radius of 26 mm. The anterior portion of the intercondylar fossa was modelled using an oblique cylinder having its circular base parallel to the sagittal plane with an average radius of 22 mm. Furthermore, it is suggested that the distal portion of the lateral femoral condyle could be modelled using parts of two oblique cones while the distal portion of the medial femoral condyle could be modelled using a part of a single oblique cone, all cones having their circular bases parallel to the sagittal plane. It is also suggested that the posterior portion of the intercondylar fossa could be modelled using two oblique cones: a proximal cone having its base parallel to the sagittal plane and a distal cone having its base parallel to the frontal plane.


2014 ◽  
Vol 519-520 ◽  
pp. 1040-1045
Author(s):  
Ling Fan

This paper makes some improvements on Roberts representation for straight line in space and proposes a coarse-to-fine three-dimensional (3D) Randomized Hough Transform (RHT) for the detection of dim targets. Using range, bearing and elevation information of the received echoes, 3D RHT can detect constant velocity target in space. In addition, this paper applies a coarse-to-fine strategy to the 3D RHT, which aims to solve both the computational and memory complexity problems. The validity of the coarse-to-fine 3D RHT is verified by simulations. In comparison with the 2D case, which only uses the range-bearing information, the coarse-to-fine 3D RHT has a better practical value in dim target detection.


2021 ◽  
Author(s):  
Xixiong Guo ◽  
Jun Cao

This study is aimed at developing a novel computational framework that can essentially simulate a tornadic wind field and investigate the wind loadings on ground constructions. It is well known that tornado is a highly turbulent airflow that simultaneously translates, rotates and updrafts with a high speed. Tornadoes induce a significantly elevated level of wind forces if compared to a straight-line wind. A suitably designed building for a straight-line wind would fail to survive when exposed to a tornadic-like wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. Since the study of tornado dynamics relying on field observations and laboratory experiments is usually expensive, restrictive, and time-consuming, computer simulation mainly via the large eddy simulation (LES) method has become a more attractive research direction in shedding light on the intricate characteristics of a tornadic wind field. For numerical simulation of a tornado-building interaction scenario, it looks quite challenging to seek a set of physically-rational and meanwhile computationally-practical boundary conditions to accompany traditional CFD approaches; however, little literature can be found, as of today, in three-dimensional (3D) computational tornado dynamics study. Inspired by the development of the immersed boundary (IB) method, this study employed a re-tailored Rankine-combined vortex model (RCVM) that applies the “relative motion” principle to the translational component of tornado, such that the building is viewed as “virtually” translating towards a “pinned” rotational flow that remains time-invariant at the far field region. This revision renders a steady-state kinematic condition applicable to the outer boundary of a large tornado simulation domain, successfully circumventing the boundary condition updating process that the original RCVM would have to suffer, and tremendously accelerating the computation. Wind loading and its influence factors are comprehensively investigated and analyzed both on a single building and on a multiple-building configuration. The relation between the wind loadings and the height and shape of the building is also examined in detail. Knowledge of these loadings may lead to design strategies that can enable ground construction to be more resistant to tornadoes, reducing the losses caused by this type of disastrous weather.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2592 ◽  
Author(s):  
Ming Ma ◽  
Qian Song ◽  
Yang Gu ◽  
Zhimin Zhou

In the field of indoor pedestrian positioning, the improved Quasi-Static magnetic Field (iQSF) method has been proposed to estimate gyroscope biases in magnetically perturbed environments. However, this method is only effective when a person walks along straight-line paths. For other curved or more complex path patterns, the iQSF method would fail to detect the quasi-static magnetic field. To address this issue, a novel approach is developed for quasi-static magnetic field detection in foot-mounted Inertial Navigation System. The proposed method detects the quasi-static magnetic field using the rate of change in differences between the magnetically derived heading and the heading derived from gyroscope. In addition, to eliminate the distortions caused by system platforms and shoes, a magnetometer calibration method is developed and the calibration is transformed from three-dimensional to two-dimensional coordinate according to the motion model of a pedestrian. The experimental results demonstrate that the proposed method can provide superior performance in suppressing the heading errors with the comparison to iQSF method.


1999 ◽  
Vol 9 (5) ◽  
pp. 212-218
Author(s):  
Dimiter Hadjistamov

Abstract Model suspension with Aerosil 380 in epoxy resin Araldite GY260 and Aerosil 380 in silicone oil M20000 are compared. The systems with 7.5%, 10% and 12.5% Aerosil 380 in Araldite GY260 show shear thickening flow behavior. A shear induced hydrodynamic force effects at the onset of shear thickening a disorder of the well ordered movement of the Areosil particles in layers. The Areosil particles build-up a pseudo-mixture that lead to a sudden development of a three dimensional structure, i.e. to viscosity incerease. One can assume that the shear thickening can be explained with an order-to-disorder transition. The viscosity increase of the shear thickening region is limited – It can reach topmost the plastic viscosity curve that has to be expected from the beginning. The dilatant system begins in the third straight line section to coincide the viscosity curve of the expected plastic system for the subsequent thixotropic agent concentration.


1995 ◽  
Vol 73 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Claude Ghez ◽  
Robert Sainburg

This paper reviews a series of experiments comparing intact controls with functionally deafferented patients to determine the role of proprioception in controlling dynamic interactions between limb segments during movement. We examine the control of hand path in a planar movement-reversal task and in a familiar three-dimensional gesture with similar biomechanical characteristics. In the planar task subjects had to move their hand out and back along a series of straight-line segments in the horizontal plane without visual feedback. The lengths and directions of the target line segments were chosen to require different amounts of shoulder motion while requiring the same elbow excursion. In controls, hand paths were, as required, straight with sharp bends at the outermost point. In patients, however, distinctive errors appeared at movement reversals, consisting of widened hand paths resulting from desynchronization in the reversals of elbow and shoulder motions. These errors reflected an inability to program elbow muscle contractions in accord with interaction torques produced at the elbow by variations in acceleration of the shoulder. The reversal errors were substantially reduced after patients had practiced for a few trials while visually monitoring movements of their arm. The improvement was not limited to the direction where they had practiced with vision, but also extended to other directions in which the elbow torques were different. This suggests that practice with vision of the arm served to improve the general rules that subjects used to plan movement, rather than simply improving the performance of a specific response. Similar to their performance on the planar task, the patients made errors in interjoint coordination during unconstrained three-dimensional gestures with movement reversals. We conclude (i) that both the planning and the learning of movement required an internal model of the dynamic properties of the limb that takes account of interaction torques acting at different joints; (ii) that this internal model is normally established and updated using proprioceptive information; but (iii) that when proprioception is lacking, vision of the limb in motion partially substitutes for proprioception.Key words: proprioception, multijoint coordination, limb movement, multijoint dynamics, deafferentation.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Abdullah Mahmoud Riyahi

Three rooted lower first permanent molar represents one of the main anatomical variants which is a treatment challenge of clinicians. This study is aimed at presenting a case of a lower first molar with an additional root that was diagnosed and managed successfully using new techniques in endodontics. Tooth #46 was diagnosed as a necrotic pulp with symptomatic apical periodontitis. Different angle radiographs were obtained, and they clearly showed three roots. The procedure was completed under magnification and illumination using an operating microscope. The access cavity was modified to achieve straight line access for all the canals. Careful step-by-step instrumentation was performed using flexible NiTi rotary files. The canals were irrigated using 6% sodium hypochlorite. Afterwards, three-dimensional obturation was completed using warm vertical compaction. Knowledge of the anatomy and an early diagnosis are required to achieve high-quality root canal treatment.


1989 ◽  
Vol 11 (4) ◽  
pp. 283-304
Author(s):  
Daniel Rouseff ◽  
Robert P. Porter ◽  
Terry E. Ewart

A three-dimensional diffraction tomography algorithm based on image projections is implemented. For each view, the measured scattered field is directly backpropagated onto a single plane in the image space. The backpropagated field evaluated on the plane is defined as the image projection because it closely approximates the straight line projection of the object. The object is then reconstructed by parallel slices using conventional straight ray tomographic techniques. This approach permits practical three-dimensional reconstruction using a limited number of views. The reconstructions made with image projections are of comparable quality to ideal diffraction-limited images. By backpropagating the field prior to filtering, curved or misaligned recording surfaces can be used. The limits on the image projection technique for multiple object systems are explored. A diffuse structure is reconstructed.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1486-1497 ◽  
Author(s):  
Kwame Owusu ◽  
G. H. F. Gardner ◽  
Wulf F. Massell

A new computer algorithm is described by which velocity estimates can be derived from three‐dimensional (3-D) multifold seismic data. The velocity estimate, referred to as “imaging velocity,” is that which best describes the diffraction hyperboloid due to a scatterer. The scattering center is best imaged when this velocity is used in the reconstruction process. The method is based on the 3-D Kirchhoff summation migration before stack. The implementation consists of two basic phases: (1) differentiating the input field traces and resampling them to a logarithmic time scale, and (2) shifting, weighting, and summing each resampled trace to a range of depth levels also chosen on a logarithmic scale. Peak amplitudes in the resulting image matrix give a time T and depth Z from which velocity is obtained using the relation [Formula: see text] The locus of constant velocity is a slanted straight line in the coordinate system of the matrix. In the usual application of migration for velocity analysis, each input trace of N samples is migrated for each of M constant velocity functions requiring [Formula: see text] moveout shift calculations. In the new method presented here, a constant shift is calculated for a given resampled trace, for each depth into which it is summed. This reduces the number of calculations per trace to about N, resulting in a significant improvement in computing efficiency. The operation of the algorithm is illustrated using synthetic and physical model data.


Sign in / Sign up

Export Citation Format

Share Document