Color-Naming and Color-Matching by Preschool Children as a Function of Visual Field and Sex

1993 ◽  
Vol 77 (3) ◽  
pp. 739-747 ◽  
Author(s):  
Jennifer L. Bernasek ◽  
Richard H. Haude

The accuracy for both a color-naming and a color-matching task as a function of visual field and sex was investigated in preschool children. Subjects were 17 boys and 17 girls ranging in age from 4.4 to 5.6 yr. Each subject was tested on both tasks, for which the target stimuli were presented tachistoscopically. Accuracy measures for each task were obtained separately for both left and right visual fields. A two-factor (sex x visual field) analysis of variance with repeated measures on the visual-field factor showed a significant difference between the sexes on the color-naming task only. No significant difference between visual fields was found for either task. However, significant interactions between sex and visual field for both the color-naming and color-matching tasks were obtained, t tests for simple main effects showed a significant right visual-field advantage for girls in naming colors. Conversely, a significant left visual-field advantage for color-matching was found for boys. Also, on the color-matching task, significant sex differences were found for both visual fields when compared separately. Boys were more accurate for left and girls more accurate for right visual field. Boys performed in a more strongly lateralized fashion on the color-matching task than did the girls, supporting the notion of greater lateralization among males.

1989 ◽  
Vol 69 (2) ◽  
pp. 651-656 ◽  
Author(s):  
David M. Tokar ◽  
Nancy Kubitz Matheson ◽  
Richard H. Haude

The relationship between accuracy of color-naming and color-matching in both visual fields (LVF and RVF) as a function of sex was investigated. Subjects were 19 men and 15 women who ranged in age from 18 to 32 yr. Each subject was tested on both a color-naming task and a color-matching task presented tachistoscopically. Accuracy measures for each task were obtained separately for both left and right visual fields. A two-factor analysis of variance with repeated measures on one factor followed by a t test for simple main effects showed significant right visual-field advantage for the color-naming task, a significant sex main effect for the color-matching task (in the left visual field only), and a significant interaction of sex by visual field for the matching task. Men performed in a more strongly lateralized fashion on the color-matching task than did women, supporting the notion of greater lateralization among males.


2021 ◽  
Vol 12 ◽  
Author(s):  
Er-Hu Zhang ◽  
Xue-Xian Lai ◽  
Defeng Li ◽  
Victoria Lai Cheng Lei ◽  
Yiqiang Chen ◽  
...  

This study examined the brain activity elicited by the hemispheric asymmetries and morpheme transposition of two-character Chinese words (canonical and transposed word) and pseudowords using event-related potentials (ERPs) with a dual-target rapid serial visual presentation (RSVP) task. Electrophysiological results showed facilitation effects for canonical words with centrally presented visual field (CVF) and right visual field (RVF) presentations but not with left visual field (LVF) presentations, as reflected by less negative N400 amplitudes. Moreover, more positive late positive component (LPC) amplitudes were observed for both canonical words and transposed words irrespective of the visual fields. More importantly, transposed words elicited a more negative N400 amplitude and a less positive LPC amplitude compared with the amplitudes elicited by canonical words for CVF and RVF presentations. For LVF presentations, transposed words elicited a less negative N250 amplitude compared with canonical words, and there was no significant difference between canonical words and transposed words in the N400 effect. Taken together, we concluded that character transposition facilitated the mapping of whole-word orthographic representation to semantic information in the LVF, as reflected by the N250 component, and such morpheme transposition influenced whole-word semantic processing in CVF and RVF presentations, as reflected by N400 and LPC components.


1994 ◽  
Vol 6 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Elizabeth L. Cowin ◽  
Joseph B. Hellige

The present experiment examined the effects of dioptric blurring on the performance of two different spatial processing tasks using the same visual stimuli. One task (the above/below, categorical task) required subjects to indicate whether a dot was above or below a horizontal line. The other task (the coordinate, near/far task) required subjects to indicate whether the dot was within 3 mm of the line. For both tasks, the stimuli on each trial were presented to either the right visual field and left hemisphere (RVF/LH) or the left Visual field and right hemisphere (LVF/RH). For the above/below task, dioptric blurring consistently increased reaction time (RT) and did so equally on LVF/RH and RVF/LH trials. Furthermore, there was no significant difference between the two visual fields for either clear or blurred stimuli. For the near/far task, dioptric blurring had no consistent effect on either RT or error rate for either visual field. On an initial block of trials, however, there were significantly fewer errors on LVF/RH than on RVF/LH trials, with the LVF/RH advantage being independent of whether the stimuli were clear or blurred. This initial LVF/RH advantage disappeared quickly with practice, regardless of whether the stimuli were clear or blurred. This pattern of results suggests that for both cerebral hemispheres, somewhat different aspects of visual information are relevant for categorical versus coordinate spatial processing and that the right hemisphere is superior to the left for coordinate (but not categorical) spatial processing.


1989 ◽  
Vol 69 (3_suppl) ◽  
pp. 1083-1089 ◽  
Author(s):  
Michael P. Rastatter ◽  
Gail Scukanec ◽  
Jeff Grilliot

Lexical decision vocal reaction times (RT) were obtained for a group of Chinese subjects to unilateral tachistoscopically presented pictorial, single, and combination Chinese characters. The RT showed a significant right visual-field advantage, with significant correlations of performance between the visual fields for each type of character. Error analysis gave a significant interaction between visual fields and error type—significantly more false positive errors occurred following left visual-field inputs. These results suggest that the left hemisphere was responsible for processing each type of character, possibly reflecting superior postaccess lexical-decision processes.


1992 ◽  
Vol 44 (3) ◽  
pp. 529-555 ◽  
Author(s):  
T. A Mondor ◽  
M.P. Bryden

In the typical visual laterality experiment, words and letters are more rapidly and accurately identified in the right visual field than in the left. However, while such studies usually control fixation, the deployment of visual attention is rarely restricted. The present studies investigated the influence of visual attention on the visual field asymmetries normally observed in single-letter identification and lexical decision tasks. Attention was controlled using a peripheral cue that provided advance knowledge of the location of the forthcoming stimulus. The time period between the onset of the cue and the onset of the stimulus (Stimulus Onset Asynchrony—SOA) was varied, such that the time available for attention to focus upon the location was controlled. At short SO As a right visual field advantage for identifying single letters and for making lexical decisions was apparent. However, at longer SOAs letters and words presented in the two visual fields were identified equally well. It is concluded that visual field advantages arise from an interaction of attentional and structural factors and that the attentional component in visual field asymmetries must be controlled in order to approximate more closely a true assessment of the relative functional capabilities of the right and left cerebral hemispheres.


1990 ◽  
Vol 64 (4) ◽  
pp. 1352-1360 ◽  
Author(s):  
M. R. Isley ◽  
D. C. Rogers-Ramachandran ◽  
P. G. Shinkman

1. The present experiments were designed to assess the effects of relatively large optically induced interocular torsional disparities on the developing kitten visual cortex. Kittens were reared with restricted visual experience. Three groups viewed a normal visual environment through goggles fitted with small prisms that introduced torsional disparities between the left and right eyes' visual fields, equal but opposite in the two eyes. Kittens in the +32 degrees goggle rearing condition experienced a 16 degrees counterclockwise rotation of the left visual field and a 16 degrees clockwise rotation of the right visual field; in the -32 degrees goggle condition the rotations were clockwise in the left eye and counterclockwise in the right. In the control (0 degree) goggle condition, the prisms did not rotate the visual fields. Three additional groups viewed high-contrast square-wave gratings through Polaroid filters arranged to provide a constant 32 degrees of interocular orientation disparity. 2. Recordings were made from neurons in visual cortex around the border of areas 17 and 18 in all kittens. Development of cortical ocular dominance columns was severely disrupted in all the experimental (rotated) rearing conditions. Most cells were classified in the extreme ocular dominance categories 1, 2, 6, and 7. Development of the system of orientation columns was also affected: among the relatively few cells with oriented receptive fields in both eyes, the distributions of interocular disparities in preferred stimulus orientation were centered near 0 degree but showed significantly larger variances than in the control condition.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1972 ◽  
Vol 31 (1) ◽  
pp. 227-230 ◽  
Author(s):  
Lester C. Shine ◽  
Joseph Wiant ◽  
Frank Da Polito

This experiment was designed to investigate the effect of learning on the free recall of letters presented tachistoscopically either to the left visual field, the right visual field, or identically and simultaneously to both visual fields. A modified Shine-Bower analysis of variance was used to analyze S's performance. The results indicate that initially, in accord with previous research, the right visual field is superior to the left visual field in performance, but that this superiority tends to reduce across trials and practically disappears in the later trials. Also, the right visual field condition is not appreciably better in performance than the condition with both visual fields.


Perception ◽  
2021 ◽  
Vol 50 (1) ◽  
pp. 27-38
Author(s):  
Ella K. Moeck ◽  
Nicole A. Thomas ◽  
Melanie K. T. Takarangi

Attention is unequally distributed across the visual field. Due to greater right than left hemisphere activation for visuospatial attention, people attend slightly more to the left than the right side. As a result, people voluntarily remember visual stimuli better when it first appears in the left than the right visual field. But does this effect—termed a right hemisphere memory bias—also enhance involuntary memory? We manipulated the presentation location of 100 highly negative images (chosen to increase the likelihood that participants would experience any involuntary memories) in three conditions: predominantly leftward (right hemisphere bias), predominantly rightward (left hemisphere bias), or equally in both visual fields (bilateral). We measured subsequent involuntary memories immediately and for 3 days after encoding. Contrary to predictions, biased hemispheric processing did not affect short- or long-term involuntary memory frequency or duration. Future research should measure hemispheric differences at retrieval, rather than just encoding.


1979 ◽  
Vol 49 (1) ◽  
pp. 183-191
Author(s):  
Colin Pitblado ◽  
Michael Petrides ◽  
Gary Riccio

Two experiments on visual-field differences in tachistoscopic letter recognition are described. In the first, a bright pre-exposure field with a black fixation point was used, and the conventionally expected dominance of the right visual field was found. However, a large number of “blank” trials were observed, in which subjects completely failed to detect the presence of the flashed target. These “blanks” were themselves significantly asymmetric between visual fields, suggesting that asymmetry in early stimulus registration may play an unsuspected role in typical measures of cerebral asymmetry in recognition accuracy. This was confirmed in a second experiment in which use of dark pre-exposure fields eliminated “blanks” and led to higher over-all accuracy, with no visual-field differences. Implications for interpretation of laterality data with normal subjects are discussed.


Sign in / Sign up

Export Citation Format

Share Document