scholarly journals Comparison between multi-correlation factor method and multi-maximum likelihood method in estimation of parameters of multi-modal weibull distribution function.

1985 ◽  
Vol 34 (387) ◽  
pp. 1466-1471 ◽  
Author(s):  
Kohichi KITAKAMI ◽  
Yohtaro MATSUO
2021 ◽  

<p>Weibull Cumulative Distribution Function (C.D.F.) has been employed to assess and compare wind potentials of two wind stations Europlatform and Stavenisse of The Netherland. Weibull distribution has been used for accurate estimation of wind energy potential for a long time. The Weibull distribution with two parameters is suitable for modeling wind data if wind distribution is unimodal. Whereas wind distribution is generally unimodal, random weather changes can make the distribution bimodal. It is always desirable to find a method that accurately represents actual statistical data. Some well-known statistical methods are Method of Moment (MoM), Linear Least Square Method (LLSM), Maximum Likelihood Method (M.L.M.), Modified Maximum Likelihood Method (MMLM), Energy Pattern Factor Method (EPFM), and Empirical Method (E.M.), etc. All these methods employ Probability Density Function (PDF) of Weibull distribution, except LLSM, which uses Cumulative Distribution Function (C.D.F.). In this communication, we are presenting a newly proposed method of evaluating Weibull parameters. Unlike most methods, this new method employs a cumulative distribution function. A MATLAB® GUI-based simulation is developed to estimate Weibull parameters using the C.D.F. approach. It is found that the Mean Square Error (M.S.E.) is the lowest when using the new method. The new method, therefore, estimates wind power density with reasonable accuracy. Wind Power (W.P.) is estimated by considering four different Wind Turbine (W.T.) models for two sites, and maximum W.P. is found using Evance R9000.</p>


2009 ◽  
Vol 6 (4) ◽  
pp. 705-710
Author(s):  
Baghdad Science Journal

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.


2011 ◽  
Vol 110-116 ◽  
pp. 4240-4245
Author(s):  
Jun Zhao Zhang ◽  
Cong Ling Wang ◽  
Xue Fa Fang

The reliability of the pneumatic cylinder was investigated by routine life test. The results show that the failures of the pneumatic cylinder can be described as a Weibull distribution and fatigue fracture of the aluminum end cap and the head of install bolt is the major failure for the pneumatic cylinder. The pneumatic cylinder life distribution parameters were estimated by the median rank method in combination with maximum likelihood method. The distribution model for the reliability of the pneumatic cylinder was also proposed here.


2021 ◽  
pp. 0309524X2199996
Author(s):  
Rajesh Kumar ◽  
Arun Kumar

Weibull distribution is an extensively used statistical distribution for analyzing wind speed and determining energy potential studies. Estimation of the wind speed distribution parameter is essential as it significantly affects the success of Weibull distribution application to wind energy. Various estimation methods viz. graphical method, moment method (MM), maximum likelihood method (ML), modified maximum likelihood method, and energy pattern factor method or power density method have been presented in various reported research studies for accurate estimation of distribution parameters. ML is the most preferred approach to study the parameter estimation. ML works on the principle of forming a likelihood function and maximizing the function for parameter estimation. ML generally uses the numerical based iterative method, such as Newton–Raphson. However, the iterative methods proposed in the literature are generally computationally intensive. In this paper, an efficient technique utilizing differential evolution (DE) algorithm to enhance the estimation accuracy of maximum likelihood estimation has been presented. The [Formula: see text] of GA-Weibull, SA-Weibull, and DE-Weibull is 0.958, 0.953, and 0.973 respectively, and value of RMSE of DE-Weibull 0.0083, GA-Weibull (0.0104), and SA-Weibull (0.0110), for the yearly wind speed data are obtained. The lowest root mean square error and larger regression value for both monthly and yearly wind speed data indicate that the DE-Weibull distribution has the best goodness of fit and advocate the DE algorithm for the parameter estimation.


2013 ◽  
Vol 12 (2) ◽  
pp. 51
Author(s):  
S. FAJARIYAH ◽  
H. SUMARNO ◽  
N. K. K. ARDANA

Up till now, models of demography mathematics usually use discrete approximation. This research will use continue approximation agree with demography characteristic that always change every times.  The Maximum Likelihood method is chosen by using five distributions. There are two data that use i.e. hypothetic data and life table data of Banten. The result of hypothetic data shows that if we choose real distribution, it will produce the good value of 2 R , whereas with survival data of Banten. The result shows that Weibull distribution is the best from another distributions. Keywords: survival function, maximum likelihood method.


Author(s):  
O. A. Bello ◽  
P. O. Awodutire ◽  
I. Sule ◽  
H. O. Lawal

This paper is a further study of the five parameter type I generalized half logistic distribution. We derived some properties of the distribution. Estimation of the parameters of the distribution under complete observation was studied using the maximum likelihood method. To assess the flexibility of the distribution, it was applied to a real lifetime data and the results when compared to the sub-models showed that the five parameter type I generalized half logistic distribution performed best.


Sign in / Sign up

Export Citation Format

Share Document