scholarly journals AFM In-situ Bending Test on Deformation Behavior of Polyethylene Lamellar Structure

2004 ◽  
Vol 53 (12) ◽  
pp. 1359-1364 ◽  
Author(s):  
Kisaragi YASHIRO ◽  
Masayuki KANAI ◽  
Yoshihiro TOMITA
2020 ◽  
Author(s):  
Congyan Zhang ◽  
Binbin Yue ◽  
Uttam Bhandari ◽  
Oleg Starovoytov ◽  
Yan Yang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 814
Author(s):  
Yaping Bai ◽  
Meng Li ◽  
Chao Cheng ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

In this study, Fe-25Mn-xAl-8Ni-C alloys (x = 10 wt.%, 11 wt.%, 12 wt.%, 13 wt.%) were prepared by a vacuum arc melting method, and the microstructure of this series of alloys and the in situ tensile deformation behavior were studied. The results showed that Fe-25Mn-xAl-8Ni-C alloys mainly contained austenite phase with a small amount of NiAl compound. With the content of Al increasing, the amount of austenite decreased while the amount of NiAl compound increased. When the Al content increased to 12 wt.%, the interface between austenite and NiAl compound and austenitic internal started to precipitate k-carbide phase. In situ tensile results also showed that as the content of Al increased, the alloy elongation decreased gradually, and the tensile strength first increased and then decreased. When the Al content was up to 11 wt.%, the elongation and tensile strength were 2.6% and 702.5 MPa, respectively; the results of in situ tensile dynamic observations show that during the process of stretching, austenite deformed first, and crack initiation mainly occurred at the interface between austenite and NiAl compound, and propagated along the interface, resulting in fracture of the alloy.


Science ◽  
2019 ◽  
Vol 366 (6464) ◽  
pp. 475-479 ◽  
Author(s):  
Guohua Dong ◽  
Suzhi Li ◽  
Mouteng Yao ◽  
Ziyao Zhou ◽  
Yong-Qiang Zhang ◽  
...  

Ferroelectrics are usually inflexible oxides that undergo brittle deformation. We synthesized freestanding single-crystalline ferroelectric barium titanate (BaTiO3) membranes with a damage-free lifting-off process. Our BaTiO3 membranes can undergo a ~180° folding during an in situ bending test, demonstrating a super-elasticity and ultraflexibility. We found that the origin of the super-elasticity was from the dynamic evolution of ferroelectric nanodomains. High stresses modulate the energy landscape markedly and allow the dipoles to rotate continuously between the a and c nanodomains. A continuous transition zone is formed to accommodate the variant strain and avoid high mismatch stress that usually causes fracture. The phenomenon should be possible in other ferroelectrics systems through domain engineering. The ultraflexible epitaxial ferroelectric membranes could enable many applications such as flexible sensors, memories, and electronic skins.


2017 ◽  
Vol 132 ◽  
pp. 17-21 ◽  
Author(s):  
Tarlan Hajilou ◽  
Yun Deng ◽  
Bjørn Rune Rogne ◽  
Nousha Kheradmand ◽  
Afrooz Barnoush
Keyword(s):  

2009 ◽  
Vol 1239 ◽  
Author(s):  
Yong Sun ◽  
Zaiwang Huang ◽  
Xiaodong Li

AbstractA facile electrophoretic deposition method was successfully applied to achieve novel nanoclay-reinforced polyacrylamide nanocomposite thin films. A special curled architecture of the re-aggregated nanoclay-platelets was identified, providing a possible source for realizing the interlocking mechanism in the nanocomposites. The curled architecture could be the result from strain releasing when the thin films were peeled off from the substrates. Through micro-/nano-indentation and in situ observation of the deformation during tensile test with an atomic force microscope (AFM), the localized deformation mechanism of the synthesized materials was investigated in further details. The results implied that a localized crack diversion mechanism worked in the synthesized nanocomposite thin films, which resembled its nature counterpart-nacre. The deformation behavior and fracture mechanism were discussed with reference to lamellar structure, interfacial strength between the nanoclays and the polyacrylamide matrix, and nanoclay agglomeration.


2014 ◽  
Vol 104 (5) ◽  
pp. 051910 ◽  
Author(s):  
Y. Wu ◽  
W. H. Liu ◽  
X. L. Wang ◽  
D. Ma ◽  
A. D. Stoica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document