scholarly journals Study on Microstructure and In Situ Tensile Deformation Behavior of Fe-25Mn-xAl-8Ni-C Alloy Prepared by Vacuum Arc Melting

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 814
Author(s):  
Yaping Bai ◽  
Meng Li ◽  
Chao Cheng ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

In this study, Fe-25Mn-xAl-8Ni-C alloys (x = 10 wt.%, 11 wt.%, 12 wt.%, 13 wt.%) were prepared by a vacuum arc melting method, and the microstructure of this series of alloys and the in situ tensile deformation behavior were studied. The results showed that Fe-25Mn-xAl-8Ni-C alloys mainly contained austenite phase with a small amount of NiAl compound. With the content of Al increasing, the amount of austenite decreased while the amount of NiAl compound increased. When the Al content increased to 12 wt.%, the interface between austenite and NiAl compound and austenitic internal started to precipitate k-carbide phase. In situ tensile results also showed that as the content of Al increased, the alloy elongation decreased gradually, and the tensile strength first increased and then decreased. When the Al content was up to 11 wt.%, the elongation and tensile strength were 2.6% and 702.5 MPa, respectively; the results of in situ tensile dynamic observations show that during the process of stretching, austenite deformed first, and crack initiation mainly occurred at the interface between austenite and NiAl compound, and propagated along the interface, resulting in fracture of the alloy.

Author(s):  
Boxin Lu ◽  
Fang Yang ◽  
Yanru Shao ◽  
Xinyue Zhang ◽  
Cunguang Chen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7722
Author(s):  
Yaping Bai ◽  
Keke Tian ◽  
Jianping Li ◽  
Zhong Yang

In this study, Fe-25Mn-9Al-8Ni-1C-xTi alloy (x = 0, 0.1, 0.2, 0.3, 0.4 wt.%) was prepared by vacuum arc melting, and the corresponding microstructure and oxidation behavior at 600 °C were studied. The results show that Fe-25Mn-9Al-8Ni-1C-xTi alloy mainly contains austenite phase, ferrite phase and TiC phase. With Ti content increasing, the austenite phase content decreases, while the contents of ferrite phase and TiC phase increase. The oxidation performance test results show that the addition of Ti element greatly reduces the oxidation weight gain of the alloys at the initial oxidation stage. With the extension of the oxidation time and the further increase of the Ti content, the alloys oxidation weight gain shows a trend of first increasing and then decreasing. When the Ti content is 0.2 wt.%, the oxidation weight gain of this series of alloy reaches the lowest value during the stable oxidation period. Compared with Fe-25Mn-9Al-8Ni-1C alloy, its weight gain per unit area is reduced by 21.1%. Fe-25Mn-9Al-8Ni-1C-xTi alloy oxide layer exhibits a double-layer structure. The outer oxygen layer is mainly loose iron-oxides, while in the inner oxygen layer, the oxides are mainly composed of manganese-oxides and aluminum-oxides, which are relatively dense.


2020 ◽  
Vol 817 ◽  
pp. 152781 ◽  
Author(s):  
Rafi Ullah ◽  
Junxia Lu ◽  
Lijun Sang ◽  
You Xiaoxiao ◽  
Wenjing Zhang ◽  
...  

2013 ◽  
Vol 745-746 ◽  
pp. 775-780 ◽  
Author(s):  
Yong Dong ◽  
Yi Ping Lu ◽  
Jun Jia Zhang ◽  
Ting Ju Li

The multi-component AlxCoCrFeNiTi0.5 (x=0, 0.2, 0.5, 0.8, 1.0) high-entropy alloys were prepared by vacuum arc melting. The microstructure and mechanical properties were studied. It was found that the structure transformed from FCC into FCC + BCC + Laves, and finally into BCC with the increase of Al content. The compress test results showed that with the addition of aluminium from 0 to 1.0, the fraction strength increased while plasticity reduced. In the stain rates of 5×10-3/s and 1×10-3/s, when x=0.8 the fraction strength achieved maximum and x=0 the plastic was best, the strength of 2879MPa and 2433MPa, the strain of 0.21 and 0.22, respectively. The hardness increased obviously (from Hv479.1 to Hv692.7) when Bcc phase and Laves phase appeared. The analysis revealed that the strengthen mechanism was mainly composed of solid solution strengthening and precipitation strengthening.


Sign in / Sign up

Export Citation Format

Share Document