scholarly journals Measuring Method of Linear Thermal Expansion for Coarse Aggregate Particle

2021 ◽  
Vol 70 (8) ◽  
pp. 604-609
Author(s):  
Hiroshi YAMADA ◽  
Takuya TOKUNAGA ◽  
Daisuke SUGIHARA
Holzforschung ◽  
2014 ◽  
Vol 68 (5) ◽  
pp. 567-574 ◽  
Author(s):  
Tsunehisa Miki ◽  
Hiroyuki Sugimoto ◽  
Yuzo Furuta ◽  
Ichinori Shigematsu ◽  
Kozo Kanayama

Abstract The thermal expansion behavior of dry solid wood was investigated by dynamic dilatometry and thermal mechanical analysis. Anomalous thermal expansion behavior was observed concerning the displacement change under a constant compression pressure, which was not previously reported. Wood submitted to temperatures below 0°C under dry conditions exhibited a large increment in the linear thermal expansion coefficient (CLTE) and a sudden drop in the CLTE around 50°C as well as above 130°C during heating. In subsequent cooling/heating processes, these anomalous behaviors remained at temperatures below 100°C, although less pronounced, and disappeared at temperatures above 100°C. These behaviors were clearly perceptible in the radial and tangential directions but not in the longitudinal direction. The CLTE depended strongly on the heat and moisture history of the samples and the effects are species-specific.


Crystals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Chao Jiang ◽  
Feifei Chen ◽  
Fapeng Yu ◽  
Shiwei Tian ◽  
Xiufeng Cheng ◽  
...  

A high-quality Ba2TiSi2O8 (BTS) single crystal was grown using the Czochralski (Cz) pulling method. The thermal expansion and electro-elastic properties of BTS crystal were studied for high temperature sensor applications. The relative dielectric permittivities ε 11 T / ε 0 and ε 33 T / ε 0 were determined to be 16.3 and 11.8, while the piezoelectric coefficients d15, d31, d33 were found to be 17.8, 2.9, and 4.0 pC/N, respectively. Temperature dependence of electro-elastic properties were investigated, where the variation of elastic compliance s 55 E (= s 44 E ) was found to be <6% over temperature range of 20–700 °C. Taking advantage of the anisotropic thermal expansion, linear thermal expansion comparable to insulating alumina ceramic was achieved over temperature range up to 650 °C. The optimum crystal cut with large effective piezoelectric coefficient (>8.5 pC/N) and linear thermal expansion coefficient (8.03 ppm/°C) achieved for BTS crystal along the (47°, φ) direction (φ is arbitrary in 0–360°), together with its good temperature stability up to 650 °C, make BTS crystal a promising candidate for high temperature piezoelectric sensors.


2017 ◽  
Vol 32 (S2) ◽  
pp. S38-S42
Author(s):  
Matthew R. Rowles ◽  
Cheng-Cheng Wang ◽  
Kongfa Chen ◽  
Na Li ◽  
Shuai He ◽  
...  

The crystal structure and thermal expansion of the perovskite samarium cobalt oxide (SmCoO3) have been determined over the temperature range 295–1245 K by Rietveld analysis of X-ray powder diffraction data. Polycrystalline samples were prepared by a sol–gel synthesis route followed by high-temperature calcination in air. SmCoO3 is orthorhombic (Pnma) at all temperatures and is isostructural with GdFeO3. The structure was refined as a distortion mode of a parent $ Pm{\bar 3}m $ structure. The thermal expansion was found to be non-linear and anisotropic, with maximum average linear thermal expansion coefficients of 34.0(3) × 10−6, 24.05(17) × 10−6, and 24.10(18) × 10−6 K−1 along the a-, b-, and c-axes, respectively, between 814 and 875 K.


2013 ◽  
Vol 11 (1) ◽  
pp. 33 ◽  
Author(s):  
Koichi Nakanishi ◽  
Akinori Kogure ◽  
Takenao Fujii ◽  
Ryohei Kokawa ◽  
Keiji Deuchi ◽  
...  

1985 ◽  
Vol 38 (4) ◽  
pp. 617 ◽  
Author(s):  
JG Collins ◽  
SJ Collocott ◽  
GK White

The linear thermal expansion coefficient a from 2 to 100 K and heat capacity per gram cp from 0�3 to 30 K are reported for fully-stabilized zirconia containing a nominal 16 wt.% (9 mol.%) of yttria. The heat capacity below 7 K has been analysed into a linear (tunnelling?) term, a Schottky term centred at 1�2 K, a Debye term (e~ = 540 K), and a small T5 contribution. The expansion coefficient is roughly proportional to T from 5 to 20 K and gives a limiting lattice Griineisen parameter 'Yo ::::: 5, which agrees with that calculated from elastic data.


2015 ◽  
Vol 29 (14) ◽  
pp. 1550091 ◽  
Author(s):  
Ü. Akdere

Classical molecular dynamics simulation calculations of silver bromide, AgBr, and silver chloride, AgCl. in constant volume–energy (NVE) and constant pressure–temperature (NPT) ensembles have been performed. The temperature dependence of linear thermal expansion and molar heat capacities at constant volume and pressure have been presented at solid and liquid phases. The anomalous behavior of these properties about 200 K below the melting temperatures has been analyzed within the frame of the onset of the transition to the superionic phase.


Sign in / Sign up

Export Citation Format

Share Document