The Drilling Rate as the Mathematical Function of Operational Parameters of Drilling Machine

2005 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Yuichi NISHIMATSU
Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 240
Author(s):  
Michael Gerasimov ◽  
Egor Dyunin ◽  
Jacob Gerasimov ◽  
Johnathan Ciplis ◽  
Aharon Friedman

The construction of a transmission line (TL) for a wide tunable broad-spectrum THz radiation source is not a simple task. We present here a platform for the future use of designs of the TL through our homemade simulations. The TL is designed to be a component of the construction of an innovative accelerator at the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications (FEL). We developed a three-dimensional space-frequency tool for the analysis of a radiation pulse. The total electromagnetic (EM) field on the edge of the source is represented in the frequency domain in terms of cavity eigenmodes. However, any pulse can be used regardless of its mathematical function, which is the key point of this work. The only requirement is the existence of the original pulse. This EM field is converted to geometric-optical ray representation through the Wigner transform at any desired resolution. Wigner’s representation allows us to describe the dynamics of field evolution in future propagation, which allows us to determine an initial design of the TL. Representation of the EM field by rays gives access to the ray tracing method and future processing, operating in the linear and non-linear regimes. This allows for fast work with graphics cards and parallel processing, providing great flexibility and serving as future preparation that enables us to apply advanced libraries such as machine learning. The platform is used to study the phase-amplitude and spectral characteristics of multimode radiation generation in a free-electron laser (FEL) operating in various operational parameters.


Author(s):  
David C Joy

The electron source is the most important component of the Scanning electron microscope (SEM) since it is this which will determine the overall performance of the machine. The gun performance can be described in terms of quantities such as its brightness, its source size, its energy spread, and its stability and, depending on the chosen application, any of these factors may be the most significant one. The task of the electron gun in an SEM is, in fact, particularly difficult because of the very wide range of operational parameters that may be required e.g a variation in probe size of from a few angstroms to a few microns, and a probe current which may go from less than a pico-amp to more than a microamp. This wide range of operating parameters makes the choice of the optimum source for scanning microscopy a difficult decision.Historically, the first step up from the sealed glass tube ‘cathode ray generator’ was the simple, diode, tungsten thermionic emitter.


1989 ◽  
Vol 32 (3) ◽  
pp. 681-687 ◽  
Author(s):  
C. Formby ◽  
B. Albritton ◽  
I. M. Rivera

We describe preliminary attempts to fit a mathematical function to the slow-component eye velocity (SCV) over the time course of caloric-induced nystagmus. Initially, we consider a Weibull equation with three parameters. These parameters are estimated by a least-squares procedure to fit digitized SCV data. We present examples of SCV data and fitted curves to show how adjustments in the parameters of the model affect the fitted curve. The best fitting parameters are presented for curves fit to 120 warm caloric responses. The fitting parameters and the efficacy of the fitted curves are compared before and after the SCV data were smoothed to reduce response variability. We also consider a more flexible four-parameter Weibull equation that, for 98% of the smoothed caloric responses, yields fits that describe the data more precisely than a line through the mean. Finally, we consider advantages and problems in fitting the Weibull function to caloric data.


2012 ◽  
Vol 57 (2) ◽  
pp. 363-373
Author(s):  
Jan Macuda

Abstract In Poland all lignite mines are dewatered with the use of large-diameter wells. Drilling of such wells is inefficient owing to the presence of loose Quaternary and Tertiary material and considerable dewatering of rock mass within the open pit area. Difficult geological conditions significantly elongate the time in which large-diameter dewatering wells are drilled, and various drilling complications and break-downs related to the caving may occur. Obtaining higher drilling rates in large-diameter wells can be achieved only when new cutter bits designs are worked out and rock drillability tests performed for optimum mechanical parameters of drilling technology. Those tests were performed for a bit ø 1.16 m in separated macroscopically homogeneous layers of similar drillability. Depending on the designed thickness of the drilled layer, there were determined measurement sections from 0.2 to 1.0 m long, and each of the sections was drilled at constant rotary speed and weight on bit values. Prior to drillability tests, accounting for the technical characteristic of the rig and strength of the string and the cutter bit, there were established limitations for mechanical parameters of drilling technology: P ∈ (Pmin; Pmax) n ∈ (nmin; nmax) where: Pmin; Pmax - lowest and highest values of weight on bit, nmin; nmax - lowest and highest values of rotary speed of bit, For finding the dependence of the rate of penetration on weight on bit and rotary speed of bit various regression models have been analyzed. The most satisfactory results were obtained for the exponential model illustrating the influence of weight on bit and rotary speed of bit on drilling rate. The regression coefficients and statistical parameters prove the good fit of the model to measurement data, presented in tables 4-6. The average drilling rate for a cutter bit with profiled wings has been described with the form: Vśr= Z ·Pa· nb where: Vśr- average drilling rate, Z - drillability coefficient, P - weight on bit, n - rotary speed of bit, a - coefficient of influence of weight on bit on drilling rate, b - coefficient of influence of rotary speed of bit on drilling rate. Industrial tests were performed for assessing the efficiency of drilling of large-diameter wells with a cutter bit having profiled wings ø 1.16 m according to elaborated model of average rate of drilling. The obtained values of average rate of drilling during industrial tests ranged from 8.33×10-4 to 1.94×10-3 m/s and were higher than the ones obtained so far, i.e. from 181.21 to 262.11%.


2010 ◽  
Vol 9 (10) ◽  
pp. 1451-1457 ◽  
Author(s):  
Corina-Petronela Musteret ◽  
Daniela Cailean ◽  
George Barjoveanu ◽  
Carmen Teodosiu

Author(s):  
А. Yu. Izmaylov ◽  
Ya. P. Lobachevskiy ◽  
V. К. Khoroshenkov ◽  
N. Т. Goncharov ◽  
S. E. Lonin ◽  
...  

The introduction of information and digital technologies that support and support all technological processes in the field is an urgent need for the development and implementation of such technology. An organisationally complex and financially intensive project is necessary because of the wide variety of economic entities that differ in the size of production, forms of ownership and socio-economic conditions of production. Automated information control system for mobile units agricultural enterprise provides those-Niko-economic performance, optimum capacity utilization through the use of timely and reliable information on technology. Machine and tractor aggregates are appertained as control objects with variable structure, which is explained by possibility of the system formation from tractor or field machines mobile units with various purposes: tillable, cultivatable, sowing, harvesting and etc. This MTA feature was determined creation of digital control systems of two groups of automatic control and management of the basic energy and operational parameters: tractors, machines and vehicles as part of MTA. To the first group are appertained the automatic control system of tractor motor component loading, motion speed, frictional sliding. To the second group – automatic regulation system of operating depth, seed rate, treatment of liquid combined fertilizers and crop protection agents, filling and driving of various MTA. Novelty of researches consists in methodology of the organization of the centralized control and management of various technological processes at carrying out field works.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Aditya Nugraha ◽  
Masri Bin Ardin

PVDF sensor is a sensor that is often used to measure force, strain, vibration and heat. In this study, PVDF sensors with surface polarization are used to detect cutting forces on the machine. The PVDF sensor that has been polarized on the surface is placed in the chuck part of the engine. Measuring instrumen for testing and calibrating PVDF sensors is oscilloscope with increased loading and reduced axial and tangential directions. After the calibration process, the PVDF sensor was used to measure cutting force on drilling machine, and then the results were compared with the PCB piezotronics force sensor. The PVDF sensor output signal is measured and studied for its voltage using an oscilloscope, where the output signal is compared to the weight given to the PVDF sensor. From the results of these tests indicate that the maximum deviation in axial loading is 0.32V while the tangential loading is 0.31VKeywords. PVDF sensor, Surface polarization, Drilling machine, Cutting force


Author(s):  
G. Variushina

Приводятся сведения об условиях формирования, объемах, химическом составе и свойствах осадков очистных сооружений производственных сточных вод автотранспортных предприятий. Даны примеры технологических решений по обезвоживанию образующихся в процессе очистки шламов. Рассмотрены технологические аспекты процесса интенсификации механического обезвоживания уплотненных осадков с использованием высокомолекулярных полиэлектролитов. Представлены данные лабораторных экспериментов по выбору типа флокулянта, его дозы, технологических параметров процесса, а также результаты определения влажности обезвоженных осадков, полученные на модели барабанного вакуум-фильтра. Приведены примеры эффективных обезвоживающих аппаратов отечественного производства и их технические характеристики, рекомендации и критерии их выбора, а также факторы, оказывающие влияние на эксплуатационные параметры обезвоживающего оборудования. Установлено, что наилучшая обезвоживающая способность барабанных вакуум-фильтров (остаточная влажность шламов от 66 до 83) может быть достигнута при применении катионного флокулянта ВПК-402 для осадков различных производственных цехов автотранспортного предприятия.Information on the conditions of generation, volumes, chemical composition and properties of sludge generated at the industrial wastewater treatment facilities of motor transport enterprises is provided. Examples of process engineering solutions for dewatering sludge generated during the wastewater treatment process are given. The technological aspects of enhancing mechanical dewatering of thickened sludge using high-molecular polyelectrolytes are considered. The data of laboratory experiments on choosing the type of flocculant, its dose, technological parameters of the process, as well as the results of determining the moisture content of dewatered sludge obtained in a model of a drum vacuum filter are presented. Examples of effective domestically produced dewatering apparatus and their technical characteristics, recommendations and criteria for their selection, as well as factors influencing the operational parameters of the dewatering equipment are given. It is found that the highest dewatering capacity of drum vacuum filters (residual sludge moisture content from 66 to 83) can be achieved by using VPK-402 cationic flocculant for processing sludge generated at the workshop premises of a motor transport enterprise.


Sign in / Sign up

Export Citation Format

Share Document