scholarly journals Effects of Myosmine on Antioxidative Defence in Rat Liver

2012 ◽  
Vol 63 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Rumyana Simeonova ◽  
Vessela Vitcheva ◽  
Galina Gorneva ◽  
Mitka Mitcheva

Effects of Myosmine on Antioxidative Defence in Rat LiverMyosmine [3-(1-pyrrolin-2-yl) pyridine] is an alkaloid structurally similar to nicotine, which is known to induce oxidative stress. In this study we investigated the effects of myosmine on enzymatic and non-enzymatic antioxidative defence in rat liver. Wistar rats received a single i.p. injection of 19 mg kg-1 of myosmine and an oral dose of 190 mg kg-1 by gavage. Nicotine was used as a positive control. Through either route of administration, myosmine altered the hepatic function by decreasing the levels of reduced glutathione, superoxide dismutase, and glutathione peroxidase activities on one hand and by increasing malondialdehyde, catalase, and glutathione reductase activity on the other. Compared to control, both routes caused significant lipid peroxidation in the liver and altered hepatic enzymatic and non-enzymatic antioxidative defences. The pro-oxidant effects of myosmine were comparable with those of nicotine.

Author(s):  
G. Albrecht ◽  
E.-M. Wiedenroth

SynopsisDuring the first 2 h of oxygen re-exposure, the GSH level was almost constant, while the GSSG increased about 10-fold. This results in a decline of the GSH/GSSG ratio, which reflects oxidative stress induced by re-aeration following hypoxic pretreatment. Further evidence for this is an increase in lipid peroxidation measured as thiobarbituric acid-reactive material (TBA-rm) and the affected content of sulfydryl-groups in the root tissues.In spite of the high level of reduced glutathione in the roots under hypoxia-inducing conditions, they contained a retarded glutathione reductase (GR) activity compared with aerobically grown roots. Re-aeration up to 2 h resulted in a further decrease in GR activity. Only at the end of the 16-h period of re-aeration the enzyme activity was able to recover, by overshooting slightly those values of the continuously aerated controls. This was accompanied by a restoring a high GSH/GSSG ratio and an enhanced level of GSH.


2021 ◽  
Vol 273 ◽  
pp. 02014
Author(s):  
Olga Pavlova ◽  
Olga Gulenko ◽  
Konstantin Krupin ◽  
Pavel Boriskin ◽  
Victor Leonov

The metabolic processes of the human body are based on multiple redox reactions and oxidative stress occurs when homeostasis is imbalanced. Antioxidant system of the body is represented by such enzymes as catalase, glutathione reductase, superoxidismutase and glutathione peroxidase. Objective: to study the dynamics of glutathione reductase activity in rat liver tissues after cryodestruction of right atrial myocardium to initiate oxidative stress. Materials and methods: 420 male rats were used. The rats were divided into two groups - intact and experimental, 210 animals in each. To initiate oxidative stress, the experimental group rats underwent cryodestruction of the right atrium. The activity of glutathione reductase in the liver tissue was determined by accumulation of oxidized glutathione before the experiment, as well as on 1, 3, 5, 7 and 14 days of the experiment. Conclusions: oxidative stress arising after cryodestruction of the right atrium up to the 7th day of the experiment provokes a decrease in the glutathione reductase activity in the rat liver tissue, but the start of reparative processes helps to restore the disturbed redox equilibrium in the body and normalize the enzyme level.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Novera Herdiani ◽  
Endah Budi Permana Putri

Abstract: Cigarette smoke is the main cause of lung obstruction. One of the obstructions in real that iscaused by cigarette smoke is oxidative stress. Oxidative stress trigger inflammation response occur andlung obstruction. Cigarette smoke able to cause lung histopathology changes like lungs obstruction onalveolus wall. Red dragon fruit extract tackle free radical then able to against the oxidative stress. Theobjective of this study to examines the image of rat lung histopathology under exposed cigarette smoke.Twenty four Wistar rats divided four groups: negative control, positive control, red dragon fruit extracttreatment of 7,2 g/200 g WB, and red dragon fruit extract10,8 g/200 g WB. Negative control only givenstandard feed. Positive control given standar feed and exposed 21 cigarette per day. Treatment groupgiven feed during 21 days. In the 22nd day rats be sacrificed, the lung taken out for observation andimage of rat lung histopathology changes by making lung organ histopathology preparationhematoxicillin Eosion (HE) staining and observed under magnification light microscope 400x. The endresult of the study indicate the finding of changes in lung histopathology such as obstruction level overthe lung tissue higher, alveolar macrophage covered alveoli after being exposed cigarette smoke. Groupwhich does not exposed cigarette smoke, lung alveolus macrophage in normal condition, there are noobstruction or alveolus macrophage occurred, its alveolar macrophage does no covering alveoli.Treatment group administered fruit dragon extract dose 10,8 g/200 g WB and dose 7,2 g/200 g WB seemalmost the same with negative control treatment. Conclusion of the research is cigarette smoke exposecan influence the number of alveolar macrophage on wistar rats. Suggestion very required furtherresearch on oxdative stress parameter.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9438
Author(s):  
Eduardo Cienfuegos-Pecina ◽  
Tannya R. Ibarra-Rivera ◽  
Alma L. Saucedo ◽  
Luis A. Ramírez-Martínez ◽  
Deanna Esquivel-Figueroa ◽  
...  

Background Ischemia–reperfusion (IR) injury is the main cause of delayed graft function in solid organ transplantation. Hypoxia-inducible factors (HIFs) control the expression of genes related to preconditioning against IR injury. During normoxia, HIF-α subunits are marked for degradation by the egg-laying defective nine homolog (EGLN) family of prolyl-4-hydroxylases. The inhibition of EGLN stabilizes HIFs and protects against IR injury. The aim of this study was to determine whether the EGLN inhibitors sodium (S)-2-hydroxyglutarate [(S)-2HG] and succinic acid (SA) have a nephroprotective effect against renal IR injury in Wistar rats. Methods (S)-2HG was synthesized in a 22.96% yield from commercially available L-glutamic acid in a two-step methodology (diazotization/alkaline hydrolysis), and its structure was confirmed by nuclear magnetic resonance and polarimetry. SA was acquired commercially. (S)-2HG and SA were independently evaluated in male and female Wistar rats respectively after renal IR injury. Rats were divided into the following groups: sham (SH), nontoxicity [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg], IR, and compound+IR [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg]; independent SH and IR groups were used for each assessed compound. Markers of kidney injury (BUN, creatinine, glucose, and uric acid) and liver function (ALT, AST, ALP, LDH, serum proteins, and albumin), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), oxidative stress biomarkers (malondialdehyde and superoxide dismutase), and histological parameters (tubular necrosis, acidophilic casts, and vascular congestion) were assessed. Tissue HIF-1α was measured by ELISA and Western blot, and the expression of Hmox1 was assessed by RT-qPCR. Results (S)-2HG had a dose-dependent nephroprotective effect, as evidenced by a significant reduction in the changes in the BUN, creatinine, ALP, AST, and LDH levels compared with the IR group. Tissue HIF-1α was only increased in the IR group compared to SH; however, (S)-2HG caused a significant increase in the expression of Hmox1, suggesting an early accumulation of HIF-1α in the (S)-2HG-treated groups. There were no significant effects on the other biomarkers. SA did not show a nephroprotective effect; the only changes were a decrease in creatinine level at 12.5 mg/kg and increased IR injury at 50 mg/kg. There were no effects on the other biochemical, proinflammatory, or oxidative stress biomarkers. Conclusion None of the compounds were hepatotoxic at the tested doses. (S)-2HG showed a dose-dependent nephroprotective effect at the evaluated doses, which involved an increase in the expression of Hmox1, suggesting stabilization of HIF-1α. SA did not show a nephroprotective effect but tended to increase IR injury when given at high doses.


2014 ◽  
Vol 66 (3) ◽  
pp. 1075-1081
Author(s):  
Ivan Simic ◽  
Violeta Iric-Cupic ◽  
Rada Vucic ◽  
Marina Petrovic ◽  
Violeta Mladenovic ◽  
...  

The aim of the present study was to evaluate the subchronic effects of 3,4-methylenedioxymethamphetamine on several oxidative stress markers: index of lipid peroxidation (ILP), superoxide dismutase (SOD) activity, superoxide radical (O2.-) levels, and reduced glutathione (GSH) levels in the frontal cortex, striatum and hippocampus of the rat. The study included 64 male Wistar rats (200-250g). The animals were treated per os with of 5, 10, or 20 mg/kg of 3,4-methylenedioxymethamphetamine (MDMA) every day for 15 days. The subchronic administration of MDMA resulted in an increase in ILP, SOD and O2.-, and a decrease in GSH, from which we conclude that oxidative stress was induced in rat brain.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 803 ◽  
Author(s):  
Maria Zych ◽  
Weronika Wojnar ◽  
Sławomir Dudek ◽  
Ilona Kaczmarczyk-Sedlak

Oxidative stress is believed to be associated with both postmenopausal disorders and cataract development. Previously, we have demonstrated that rosmarinic and sinapic acids, which are diet-derived antioxidative phenolic acids, counteracted some disorders induced by estrogen deficiency. Other studies have shown that some phenolic acids may reduce cataract development in various animal models. However, there is no data on the effect of phenolic acids on oxidative stress markers in the lenses of estrogen-deficient rats. The study aimed to investigate whether administration of rosmarinic acid and sinapic acid affects the antioxidative abilities and oxidative damage parameters in the lenses of estrogen-deficient rats. The study was conducted on three-month-old female Wistar rats. The ovariectomized rats were orally treated with rosmarinic acid at doses of 10 and 50 mg/kg or sinapic acid at doses of 5 and 25 mg/kg, for 4 weeks. The content of reduced glutathione (GSH), oxidized glutathione and amyloid β1-42, as well as products of protein and lipid oxidation, were assessed. Moreover, the activities of superoxide dismutase, catalase, and some glutathione-related enzymes in the lenses were determined. Rosmarinic and sinapic acids in both doses resulted in an increase in the GSH content and glutathione reductase activity. They also improved parameters connected with protein oxidation. Since GSH plays an important role in maintaining the lens transparency, the increase in GSH content in lenses after the use of rosmarinic and sinapic acids seems to be beneficial. Therefore, both the investigated dietary compounds may be helpful in preventing cataract.


2009 ◽  
Vol 20 (16) ◽  
pp. 3628-3637 ◽  
Author(s):  
Philippe J. Nadeau ◽  
Steve J. Charette ◽  
Jacques Landry

ASK1 cysteine oxidation allows JNK activation upon oxidative stress. Trx1 negatively regulates this pathway by reducing the oxidized cysteines of ASK1. However, precisely how oxidized ASK1 is involved in JNK activation and how Trx1 regulates ASK1 oxidoreduction remains elusive. Here, we describe two different thiol reductase activities of Trx1 on ASK1. First, in H2O2-treated cells, Trx1 reduces the various disulfide bonds generated between cysteines of ASK1 by a rapid and transient action. Second, in untreated cells, Trx1 shows a more stable thiol reductase activity on cysteine 250 (Cys250) of ASK1. After H2O2 treatment, Trx1 dissociates from Cys250, which is not sufficient to activate the ASK1-JNK pathway. Indeed, in untreated cells, a Cys250 to alanine mutant of ASK1 (C250A), which cannot bind Trx1, does not constitutively activate JNK. On the other hand, in H2O2-treated cells, this mutant (C250A) fails to activate JNK and does not induce apoptosis, although it remains fully phosphorylated on Threonine 838 (Thr838) in its activation loop. Overall, our data show that Cys250 is essential for H2O2-dependent signaling downstream from ASK1 but at a step subsequent to the phosphorylation of ASK1 Thr838. They also clarify the thiol reductase function of Trx1 on ASK1 activity.


1978 ◽  
Vol 174 (3) ◽  
pp. 819-825 ◽  
Author(s):  
E C Abraham ◽  
J F Taylor ◽  
C A Lang

In order to determine whether the biological age of a mouse influences erythrocyte metabolism and erythrocyte aging in vivo, blood samples were collected from male C57/BL6J mice of different biological ages ranging from mature (10 months) to “very old” (37 months). In the very old mouse, compared with the mature mouse, the erythrocyte survival time was decreased, erythrocyte densities were increased, the concentrations of total free thiol and reduced glutathione, and glutathione reductase activity were decreased. Erythrocytes were separated into different density (age) groups by phthalate ester two-phase centrifugation or by albumin density-gradient centrifugation. The density-age relationship of erythrocytes was established by pulse-labelling with 59Fe in vivo and by subsequent determinations of specific radioactivity of erythrocyte fractions of different densities prepared during a chase period of 60 days. The age of erythrocytes in mice of all ages was directly related to density. Also, in older erythrocytes compared with younger erythrocytes, decreased concentrations of total free thiol and reduced glutathione, and decreased glutathione reductase activity were observed. These were the lowest in the old erythrocytes of very old mice. These results in aging erythrocytes from aging mice suggest that the glutathione status the erythrocyte may be an index of aging, not only of the cell but also of the organism.


Sign in / Sign up

Export Citation Format

Share Document