scholarly journals Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach

2018 ◽  
Vol 6 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Wiesława Kranc ◽  
Maurycy Jankowski ◽  
Joanna Budna ◽  
Piotr Celichowski ◽  
Ronza Khozmi ◽  
...  

AbstractThe ovary is part of the reproductive system, possessing very important functions in the reproduction process (ovum and embryo transfer, providing a suitable environment for sperm capacitation, etc.). There are two types of cells in the fallopian tubes: alveolar and secretive cells. These study shows the metabolic processes in pig oviductal epithelial cells associated with the activation of signaling pathways of amino acids metabolism and degradation during long-term in vitro culture. Oviductal epithelial cells from 45 colonies in the anestrous phase of the estrous cycle have been utilized in this study. RNA extract from the OEC primary cultures was pooled after 24h, 7days, 15 days and 30 days from the beginning of culture and the transcriptome investigated by Affymetrix® Porcine Gene 1.1 ST. From the whole transcript that consisted of 2009 different genes, 1537 were upregulated and 995 were downregulated after 7 days of culture, 1471 were upregulated and 1061 were downregulated after 15 days of culture and 1329 were upregulated and 1203 were downregulated after 30 days of culture. The results of these studies provide, for the first time, information on the activation of metabolic pathways of amino acids such as valine, leucine, isoleucine, cysteine, and methionine in the investigated tissue. They also indicate genes that may be OECs-specific genetic markers that are expressed or upregulated during long-term in vitro culture.

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1938
Author(s):  
Artur Bryja ◽  
Patrycja Sujka-Kordowska ◽  
Aneta Konwerska ◽  
Sylwia Ciesiółka ◽  
Maria Wieczorkiewicz ◽  
...  

The mechanisms of wound healing and vascularization are crucial steps of the complex morphological process of tissue reconstruction. In addition to epithelial cells, fibroblasts play an important role in this process. They are characterized by dynamic proliferation and they form the stroma for epithelial cells. In this study, we have used primary cultures of oral fibroblasts, obtained from porcine buccal mucosa. Cells were maintained long-term in in vitro conditions, in order to investigate the expression profile of the molecular markers involved in wound healing and vascularization. Based on the Affymetrix assays, we have observed three ontological groups of markers as wound healing group, response to wounding group and vascularization group, represented by different genes characterized by their expression profile during long-term primary in vitro culture (IVC) of porcine oral fibroblasts. Following the analysis of gene expression in three previously identified groups of genes, we have identified that transforming growth factor beta 1 (TGFB1), ITGB3, PDPN, and ETS1 are involved in all three processes, suggesting that these genes could be recognized as markers of repair specific for oral fibroblasts within the porcine mucosal tissue.


2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jakob Weglage ◽  
Friederike Wolters ◽  
Laura Hehr ◽  
Jakob Lichtenberger ◽  
Celina Wulz ◽  
...  

AbstractSchistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia, in sub-Saharan Africa, and particularly also in Europe. The WHO describes an increasing global health burden with more than 290 million people threatened by the disease and a potential to spread into regions with temperate climates like Corsica, France. The aim of our study was to investigate the influence of S. mansoni infection on colorectal carcinogenic signaling pathways in vivo and in vitro. S. mansoni infection, soluble egg antigens (SEA) and the Interleukin-4-inducing principle from S. mansoni eggs induce Wnt/β-catenin signaling and the protooncogene c-Jun as well as downstream factor Cyclin D1 and markers for DNA-damage, such as Parp1 and γH2a.x in enterocytes. The presence of these characteristic hallmarks of colorectal carcinogenesis was confirmed in colon biopsies from S. mansoni-infected patients demonstrating the clinical relevance of our findings. For the first time it was shown that S. mansoni SEA may be involved in the induction of colorectal carcinoma-associated signaling pathways.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 491
Author(s):  
Jesus Valcarcel ◽  
Javier Fraguas ◽  
Carolina Hermida-Merino ◽  
Daniel Hermida-Merino ◽  
Manuel M. Piñeiro ◽  
...  

Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process: initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.


Sign in / Sign up

Export Citation Format

Share Document