scholarly journals In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

2017 ◽  
Vol 23 (6) ◽  
pp. 323-332 ◽  
Author(s):  
Masaya Hagiwara ◽  
Naomichi Maruta ◽  
Moegi Marumoto
Author(s):  
Jin-Soo Park ◽  
RyeonJin Cho ◽  
Eun-Young Kang ◽  
Yeon-Mok Oh

AbstractEmphysema, a pathological component of chronic obstructive pulmonary disease, causes irreversible damage to the lung. Previous studies have shown that Slit plays essential roles in cell proliferation, angiogenesis, and organ development. In this study, we evaluated the effect of Slit2 on the proliferation and migration of mouse lung epithelial cells and its role in regeneration in an emphysema lung mouse model. Here, we have shown that Slit2/Robo signaling contributes to the regeneration of lungs damaged by emphysema. Mouse epithelial lung cells treated with Slit2 exhibited increased proliferation and migration in vitro. Our results also showed that Slit2 administration improved alveolar regeneration in the emphysema mouse model in vivo. Furthermore, Slit2/Robo signaling increased the phosphorylation of ERK and Akt, which was mediated by Ras activity. These Slit2-mediated cellular signaling processes may be involved in the proliferation and migration of mouse lung epithelial cells and are also associated with the potential mechanism of lung regeneration. Our findings suggest that Slit2 administration may be beneficial for alveolar regeneration in lungs damaged by emphysema.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jibran Sualeh Muhammad ◽  
Narjes Saheb Sharif-Askari ◽  
Zheng-Guo Cui ◽  
Mawieh Hamad ◽  
Rabih Halwani

Numerous researches have focused on the genetic variations affecting SARS-CoV-2 infection, whereas the epigenetic effects are inadequately described. In this report, for the first time, we have identified potential candidate genes that might be regulated via SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, in silico transcriptomic data of COVID-19 lung autopsies were used to identify the top differentially expressed genes containing CpG Islands in their promoter region. Similar gene regulations were also observed in an in vitro model of SARS-CoV-2 infected lung epithelial cells (NHBE and A549). SARS-CoV-2 infection significantly decreased the levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in lung epithelial cells. Out of 14 candidate genes identified, the expression of 12 genes was upregulated suggesting promoter hypomethylation, while only two genes were downregulated suggesting promoter hypermethylation in COVID-19. Among those 12 upregulated genes, only HSPA1L and ULBP2 were found to be upregulated in AZA-treated lung epithelial cells and immune cells, suggesting their epigenetic regulation. To confirm the hypomethylation of these two genes during SARS-CoV-2 infection, their promoter methylation and mRNA expression levels were determined in the genomic DNA/RNA obtained from whole blood samples of asymptomatic, severe COVID-19 patients and equally matched healthy controls. The methylation level of HSPA1L was significantly decreased and the mRNA expression was increased in both asymptomatic and severe COVID-19 blood samples suggesting its epigenetic regulation by SARS-CoV-2 infection. Functionally, HSPA1L is known to facilitate host viral replication and has been proposed as a potential target for antiviral prophylaxis and treatment.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1975 ◽  
Author(s):  
Daria Bortolotti ◽  
Valentina Gentili ◽  
Sabrina Rizzo ◽  
Antonella Rotola ◽  
Roberta Rizzo

Natural killer cells are important in the control of viral infections. However, the role of NK cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has previously not been identified. Peripheral blood NK cells from SARS-CoV and SARS-CoV-2 naïve subjects were evaluated for their activation, degranulation, and interferon-gamma expression in the presence of SARS-CoV and SARS-CoV-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was performed by flow cytometry and immune fluorescence. SARS-CoV and SARS-CoV-2 spike proteins did not alter NK cell activation in a K562 in vitro model. On the contrary, SARS-CoV-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell-reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of an SP1-derived HLA-E-binding peptide. Simultaneously, there was increased modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 was expressed in lung epithelial cells. We ruled out the GATA3 transcription factor as being responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicated in NK cell exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells’ exhaustion might contribute to immunopathogenesis in SARS-CoV-2 infection.


2009 ◽  
Vol 296 (6) ◽  
pp. L1012-L1018 ◽  
Author(s):  
Nagaraja Sethuraman Balakathiresan ◽  
Sharmistha Bhattacharyya ◽  
Usha Gutti ◽  
Robert P. Long ◽  
Catherine Jozwik ◽  
...  

Cystic fibrosis (CF) is due to mutations in the CFTR gene and is characterized by hypersecretion of the proinflammatory chemokine IL-8 into the airway lumen. Consequently, this induces the highly inflammatory cellular phenotype typical of CF. Our initial studies revealed that IL-8 mRNA is relatively stable in CF cells compared with those that had been repaired with [WT]CFTR (wild-type CFTR). Relevantly, the 3′-UTR of IL-8 mRNA contains AU-rich sequences (AREs) that have been shown to mediate posttranscriptional regulation of proinflammatory genes upon binding to ARE-binding proteins including Tristetraprolin (TTP). We therefore hypothesized that very low endogenous levels of TTP in CF cells might be responsible for the relative stability of IL-8 mRNA. As predicted, increased expression of TTP in CF cells resulted in reduced stability of IL-8 mRNA. An in vitro analysis of IL-8 mRNA stability in CF cells also revealed a TTP-induced enhancement of deadenylation causing reduction of IL-8 mRNA stability. We conclude that enhanced stability of IL-8 mRNA in TTP-deficient CF lung epithelial cells serve to drive the proinflammatory cellular phenotype in the CF lung.


2019 ◽  
Vol 61 (3) ◽  
pp. 395-398
Author(s):  
Christin Peteranderl ◽  
Irina Kuznetsova ◽  
Jessica Schulze ◽  
Martin Hardt ◽  
Emilia Lecuona ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document