scholarly journals Analysis of the Barrette Load Investigation of the Tallest Building in European Union

2018 ◽  
Vol 64 (4) ◽  
pp. 281-292
Author(s):  
G. Kacprzak ◽  
S. Bodus

AbstractThe paper presents a static load test of a pile with the largest vertical load in Poland to-date up to the force of 23000 kN. The test was performed in the centre of Warsaw on the construction site of a future high-rise building to be the tallest building in European Union. The designed building height measured from the ground level is 310 meters including an 80-metre mast. The foundation of the building was designed as a Combined Piled Raft Foundation (CPRF) utilising the barrettes and diaphragm walls technology. The test was carried out on barrettes with lengths of approx. 28 and 34 m and was aimed to estimate the stiffness (load-settlement relation) of the designed 17.5 metre-long barrette situated below the foundation level. In addition to that a series of extensometric sensors was placed inside the barrette to determine the distribution of the axial force.

2012 ◽  
Vol 166-169 ◽  
pp. 501-504
Author(s):  
Xiao Wei Zhang ◽  
Zhong Ming Xiong ◽  
Ni Na Su

In this paper, the application of finite element software with the actual structure of the field static load test for the engineering background, describes the space effect of portal frame under vertical load. Established a gymnasium mode of portal frame through the finite element software, quantitative analysis the space effect under the vertical load, and studied the spatial interaction of longitudinal anti-lateral component to the overall structure, and compared with the results of the field static load test. The calculation results show that, the reduction of spatial effect to internal forces under the vertical load should be considered in design. It is important that a reasonable increase in rigid tie and support can enhance the space effect of the whole portal frame.


2015 ◽  
Vol 725-726 ◽  
pp. 190-194
Author(s):  
Andrey Badanin ◽  
Victor Melnikov ◽  
Darya Filippova

The article discusses the causes of discrepancies in the values of the pile load capacity based on the results of calculations made on the basis of existing regulations and the pile load capacity after static load test on the construction site. A brief overview of the causes of discrepancies in analytical and practical values ​​of pile load capacity is provided in the article. The possible ways to solve this problem are suggested, namely, the development of the methods of analytical calculations of pile load capacity and the improvement of embedding technical processes. There is an example of such a discrepancy in the construction of a residential complex in Saint-Petersburg presented in the article. It was found that the variation in the results is not caused by the imperfections in the method of calculations, but by the infringements of construction technology. The article provides recommendations to minimize the discrepancies between the calculated and actual values of pile load capacity.


2016 ◽  
Vol 8 (5) ◽  
pp. 495-498
Author(s):  
Tautvydas Statkus

In this article jacked pile installation technology and its current processes, altering the base physical and mechanical characteristics are discussed. For the jacked pile static load test simulation Plax 3D software was selected, the opportunities and developments were described. Model building, materials, models, model geometry, finite elements, boundary conditions and assumptions adopted in addressing problems described in detail. Three different tasks formulated and load-settlement dependence a comparison of the results with the experiment given. Conclusions are formulated according to the modeling results. Šiame straipsnyje aptarta spaustinių polių įrengimo technologija ir ją taikant vykstantys procesai, keičiantys pagrindo fizines ir mechanines charakteristikas. Spaustinio polio bandymui statine apkrova modeliuoti pasirinktas PLAXIS 3D programinis paketas ir aprašytos jo galimybės bei raida. Detaliai nupasakotas modelio kūrimas, medžiagų modeliai, modelio geometrija, baigtiniai elementai, kraštinės sąlygos ir priimamos prielaidos sprendžiant problemą. Suformuluoti trys sprendžiami uždaviniai ir apkrovos bei nuosėdžio priklausomybe pateikiamas rezultatų palyginimas su eksperimentu. Atsižvelgiant į modeliavimo rezultatus suformuluotos išvados.


2013 ◽  
Vol 790 ◽  
pp. 227-230
Author(s):  
Jian Feng Su ◽  
Yu Feng Xu

Floor slab static load test is a important method to judge the performance and carrying capacity of the slab. This paper, with the background of a factory frame-structure slab, introduced the testing scheme, the details of the testing process as well as the test results. The testing cases provide a useful reference for the same type of project.


2014 ◽  
Vol 22 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Michal Hoľko ◽  
Jakub Stacho

Abstract The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.


2018 ◽  
Vol 149 ◽  
pp. 02031
Author(s):  
A. K. Alzo’ubi ◽  
Farid Ibrahim

In the United Arab Emirates, Continuous Flight Auger piles are the most widely used type of deep foundation. To test the pile behaviour, the Static Load Test is routinely conducted in the field by increasing the dead load while monitoring the displacement. Although the test is reliable, it is expensive to conduct. This test is usually conducted in the UAE to verify the pile capacity and displacement as the load increase and decreases in two cycles. In this paper we will utilize the Artificial Neural Network approach to build a model that can predict a complete Static Load Pile test. We will show that by integrating the pile configuration, soil properties, and ground water table in one artificial neural network model, the Static Load Test can be predicted with confidence. We believe that based on this approach, the model is able to predict the entire pile load test from start to end. The suggested approach is an excellent tool to reduce the cost associated with such expensive tests or to predict pile’s performance ahead of the actual test.


Sign in / Sign up

Export Citation Format

Share Document