scholarly journals Identification of Bread and Durum Wheats from their Diploid Ancestral Species Based on Chloroplast DNA

2020 ◽  
Vol 66 (2) ◽  
pp. 56-66
Author(s):  
Nadia Haider ◽  
Imad Nabulsi

AbstractSpecies that have been identified as the genome donors to cultivated polyploid durum and bread wheats (Triticum durum L. and T. aestivum L., respectively) are potential gene sources for the breeding of these two crops. Therefore, their accurate identification facilitates their use in the improvement of these crops. Based on chloroplast DNA analysis (rpL2 and rps16 introns, psbC-trnS, trnT-L, and trnL-F) using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP), an attempt was made in 2018 (Department of Molecular Biology and Biotechnology/AECS) to identify durum and bread wheats from each of their proposed diploid ancestral species (i.e., T. monococcum, T. urartu, Aegilops speltoides, and Ae. tauschii). The use of two PCR markers (psbC-trnS and trnL-F) and three PCR-RFLP locus-enzyme combinations (rps16 intron-Tru 1I, rpL2 intron-Taq I, and trnT-L-Taq I) allowed the identification of all species involved. Reliable and accurate identification of diploid ancestors of durum and bread wheats using these candidate species-specific cpDNA markers will be useful for wheat breeding programs, in situ and ex situ conservation efforts, verification of seed purity in commercial seed stocks, and ensuring identity and integrity of accessions held within a collection does not change through unwanted gene flow or by genetic drift after regeneration by seed.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 678
Author(s):  
Elena Konovalova ◽  
Olga Romanenkova ◽  
Olga Kostyunina ◽  
Elena Gladyr

The article highlighted the problem of meat cattle genetic defects. The aim was the development of DNA tests for some genetic defects diagnostics, the determination of the animal carriers and their frequencies tracking in time. The 1490 DNA samples from the Aberdeen Angus (n = 701), Hereford (n = 385), Simmental (n = 286) and Belgian Blue (n = 118) cattle have been genotyped on the genetic defects by newly created and earlier developed DNA tests based on AS-PCR and PCR-RFLP methods. The Aberdeen Angus cattle genotyping has revealed 2.38 ± 0.31% AMC-cows and 1.67 ± 0.19 % AMC-bulls, 0.65 ± 0.07% DDC-cows and 0.90 ± 0.10% DDC-bulls. The single animals among the Hereford cattle were carriers of MSUD and CWH (on 0.27 ± 0.05%), ICM and HY (on 0.16 ± 0.03%). The Simmental cattle were free from OS. All Belgian Blue livestock were M1- and 0.84%-CMD1-carriers. The different ages Aberdeen Angus cattle genotyping has shown the tendency of the AMC- and DDC frequencies to increase in the later generations. The statistically significant increase of DDC of 1.17% in the cows’ population born in 2019 compared to those born in 2015 allows concluding the further development of the DNA analysis-based measures preventing the manifestation of the genetic anomalies in meat cattle herds is necessary.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 883-889 ◽  
Author(s):  
N T Miyashita ◽  
N Mori ◽  
K Tsunewaki

Abstract Restriction map variation in two 5-6-kb chloroplast DNA regions of five diploid Aegilops species in the section Sitopsis and two wild tetraploid wheats, Triticum dicoccoides and Triticum araraticum, was investigated with a battery of four-cutter restriction enzymes. A single accession each of Triticum durum, Triticum timopheevi and Triticum aestivum was included as a reference. More than 250 restriction sites were scored, of which only seven sites were found polymorphic in Aegilops speltoides. No restriction site polymorphisms were detected in all of the other diploid and tetraploid species. In addition, six insertion/deletion polymorphisms were detected, but they were mostly unique or species-specific. Estimated nucleotide diversity was 0.0006 for A. speltoides, and 0.0000 for all the other investigated species. In A. speltoides, none of Tajima's D values was significant, indicating no clear deviation from the neutrality of molecular polymorphisms. Significant non-random association was detected for three combinations out of 10 possible pairs between polymorphic restriction sites in A. speltoides. Phylogenetic relationship among all the plastotypes (plastid genotype) suggested the diphyletic origin of T. dicoccoides and T. araraticum. A plastotype of one A. speltoides accession was identical to the major type of T. araraticum (T. timopheevi inclusively). Three of the plastotypes found in the Sitopsis species are very similar, but not identical, to that of T. dicoccoides, T. durum and T. aestivum.


2008 ◽  
Vol 136 ◽  
pp. S103 ◽  
Author(s):  
Feifei Wu ◽  
Zhihong Zhang ◽  
Hongyan Dai ◽  
Ye Zhang ◽  
Linlin Chang

2018 ◽  
Vol 57 (5) ◽  
pp. 643-648
Author(s):  
Milena Kordalewska ◽  
Joanna Kalita ◽  
Zofia Bakuła ◽  
Anna Brillowska-Dąbrowska ◽  
Tomasz Jagielski

2017 ◽  
Vol 107 (0) ◽  
Author(s):  
Andrea A. F. Mourão ◽  
Diogo Freitas-Souza ◽  
Diogo T. Hashimoto ◽  
Daniela C. Ferreira ◽  
Fernanda D. do Prado ◽  
...  

ABSTRACT The hybridization is a widely-discussed issue in several studies with fish species. For some authors, hybridization may be related with diversification and speciation of several groups, or also with the extinction of populations or species. Difficulties to differentiate species and hybrids may be a problem to correctly apply a management of wild species, because hybrid lineages, especially the advanced ones, may resemble the parental species. The genus Cichla Bloch & Schneider, 1801 constitutes an interesting experimental model, considering that hybridization and taxonomic uncertainties hinder a correct identification. Considering these problems, in this study, we developed genetic methodologies and applied meristic and morphometric approaches in wild samples in order to identify species and for test a possible hybridization between Cichla kelberi Kullander & Ferreira, 2006 and Cichla piquiti Kullander & Ferreira, 2006. For this, C. kelberi, C. piquiti and potential hybrid ( carijó) individuals were collected in Paraná and Tietê rivers (SP, Brazil). For meristic and morphometric methods, the individuals were analyzed using the statistical software Pcord 5:31, while for molecular methods, primers for PCR-multiplex were designed and enzyme for PCR-RFLP were selected, under the species-specific nucleotide. All results indicated that the carijó is not an interspecific hybrid, because it presented identical genetic pattern and morphology closed to C. piquiti. Thus, we propose that carijó is a C. piquiti morphotype. In addition, this study promotes a new molecular tool that could be used in future research, monitoring and management programs of the genus Cichla.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 117-122 ◽  
Author(s):  
Amit Kumar ◽  
Vereena Rodrigues ◽  
Priyanka Mishra ◽  
Kuppusamy Baskaran ◽  
Ashutosh Shukla ◽  
...  

Abstract Ocimum tenuiflorum has been widely used in traditional medicine and has high medicinal value. High volume trade of this potential medicinal plant species led to unscrupulous adulteration of both crude drugs as well as formulations. Morphology-based authentication is difficult in cases of incomplete or damaged samples and in dried herbal materials. In such cases, PCR-based molecular methods may aid in accurate identification. The present study aimed at developing species-specific DNA marker(s) for the authentication of O. tenuiflorum. A species-specific amplicon (279 bp) generated through an inter-simple sequence repeat marker (UBC 835) in all individuals of O. tenuiflorum was cloned, sequenced, and a primer pair was developed (designated as CIM-OT-835F/CIM-OT-835R). The newly developed sequence characterized amplified region marker was validated through PCR amplification in all available seven species of Ocimum, and its specificity for O. tenuiflorum was confirmed with the consistent generation of an amplicon of 177 bp. The developed marker can be used for accurate and rapid identification of the species for certification purposes and will be useful in quality control of medicinal preparations containing this important medicinal species.


2008 ◽  
Vol 77 (4) ◽  
pp. 408-417 ◽  
Author(s):  
Natsu Tanikawa ◽  
Takashi Onozaki ◽  
Masayoshi Nakayama ◽  
Michio Shibata

Author(s):  
Audrey Denvir ◽  
Jeannine Cavender-Bares ◽  
Antonio González-Rodríguez

Gardens and horticulturists play an increasingly important role in plant conservation, both in situ and ex situ. Integrated research and conservation of species intends to work across fields to connect science to conservation practice by engaging actors from different sectors, including gardens. The case of integrated conservation of Quercus brandegeei, a microendemic oak species in Baja California Sur, Mexico, is presented as an example of a collaboration between gardens and academic researchers to create a species-specific conservation plan that incorporates horticultural knowledge.


Author(s):  
Reza Fotouhi-Ardakani ◽  
Seyedeh Maryam Ghafari ◽  
Paul Donald Ready ◽  
Parviz Parvizi

Many laboratory methods are used to diagnose leishmaniasis because it is characterized by varied symptoms and caused by different Leishmania species. A quantitative real-time PCR method based on a TaqMan probe was developed and modified for accurate identification of human cutaneous leishmaniasis (caused by Leishmania major or Leishmania tropica) from endemic areas of Iran. Two gene regions of amino acid permease 3 (AAP3) and cytochrome oxidase II (COII) were considered. Six new sets of species-specific primers and probes were designed. A total of 123 samples were examined and employed to evaluate and validate real-time PCR. According to parasitic load of the genesig®Leishmania Advanced Standard Kit, a serial dilution of purified plasmid (2–2×107 copies/reaction) was prepared under the same conditions for both genes. Specific primers and probes were able to detect three and six parasite copies in AAP3 and COII genes, respectively, and were able to detect three copies of parasites for L. major and L. tropica. The sensitivities of the reference kit and our method were 98.7 and 98.1%, respectively, and specificity was 100% for detecting parasite genomes in all assays. Designed primers and probes performed well in terms of efficiency and regression coefficient. For AAP3 and COII genes, respectively, the linear log range was 7 and the correlation coefficient (R2) was 0.749 and 0.996 for the reference kit using the standard generated curve and 0.98 and 0.96 with serial dilutions of parasite DNA. This research detected L. major and L. tropica definitely and opens the horizon for the other scientists in the multiplex reactions in designing and optimization of the conditions in silico and in vivo.


Author(s):  
R.O. Davoyan ◽  
◽  
I.V. Bebyakina ◽  
E.R. Davoyan ◽  
V.A. Bibishev ◽  
...  

T. miguschovae (GGAADD) was used as a “genetic bridge” to transfer valuable traits to the common wheat instead T. militina and Ae. tauschii. Lines with resistance to leaf rust, yellow rust and powdery mildew, as well as with high protein content (17–18 %) were selected. The lines with translocation Т2BL.2BS-2GL, 5BS.5BL-5GL, T6BS.6BL-6GL and substitution of chromosomes 1D(1Dt), 4D(4Dt), 5D(5Dt), 6D(6Dt) were identified. DNA analysis revealed that the lines can carry leaf rust resistance genes that are different from the known Lr39 and Lr50. Introgression lines have been successfully used in breeding. Five common winter wheat cultivars are developed.


Sign in / Sign up

Export Citation Format

Share Document