scholarly journals Influence of infiltration on soil erosion in green infrastructures

2021 ◽  
Vol 24 (1) ◽  
pp. 1-8
Author(s):  
Janarul Shaikh ◽  
Sudheer Kumar Yamsani ◽  
Manash Jyoti Bora ◽  
Sanjeet Sahoo ◽  
Sreedeep Sekharan ◽  
...  

Abstract Rainwater-induced erosion in green geotechnical infrastructures such as a multilayered landfill cover system (MLCS) is a severe concern in the current era. Although vegetation is a proven measure to control erosion in the MLCS, there are other factors such as infiltration rate which influence the control of the phenomenon. Most of the existing studies are limited to understand influence of vegetation on erosion control or infiltration rate alone. In this study, an attempt is made to incorporate infiltration measurements alongside vegetation cover to understand erosion in surface layer of the MLCS. For this purpose, a pilot MLCS was constructed, and erosion of its surface soil was temporally evaluated through soil loss depth of eroded cover surface under the influence of natural as well as simulated rainfall conditions. Alongside erosion, the amount of vegetated cover was evaluated through photographic image analyses and infiltration rate was measured by mini disk infiltrometer. From the observed results, it is understood that soil erosion and infiltration rate depict a contrasting behaviour with growing vegetation. Antecedent moisture contents were observed to show greater influence on such erosion behaviour which was observed during the testing period. Such studies may be helpful to researchers and practicing engineers for understanding performance of various green geotechnical infrastructures and scheduling the maintenance services to increase the longevity of their layered soil systems.

2019 ◽  
Vol 22 (2) ◽  
pp. 75-79
Author(s):  
Janarul Shaikh ◽  
Sudheer Kumar Yamsani ◽  
Manash Jyoti Bora ◽  
Sreedeep Sekharan ◽  
Ravi Ranjan Rakesh ◽  
...  

Abstract Soil erosion is a very common phenomenon encountered at many sloped earthen geotechnical structures. For instance, the surface soil of an inclined landfill cover system undergoes the erosion due to various adverse atmospheric variants. This is one of the major causes for performance failure in the cover system. However, previous researchers have rarely conducted the study for field assessment of soil erosion in high rainfall tropical regions such as northeast India. The literature advocates the utilization of vegetation for erosion management. This study investigated the impact of vegetation growth on soil erosion of a cover surface layer under both natural and controlled artificial rainfall. The soil erosion was monitored by collecting the soil loss due to rainfall. Vegetation growth was evaluated based on photographic image analyses. The study clearly indicates that the vegetation growth can contribute to reduction of soil erosion from the landfill cover surface.


2016 ◽  
Vol 44 ◽  
pp. 189-196 ◽  
Author(s):  
Éva Ujaczki ◽  
Viktória Feigl ◽  
Mónika Molnár ◽  
Emese Vaszita ◽  
Nikolett Uzinger ◽  
...  

2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


2017 ◽  
Vol 69 ◽  
pp. 281-288 ◽  
Author(s):  
Marcel Schulte ◽  
Maik A. Jochmann ◽  
Tobias Gehrke ◽  
Andrea Thom ◽  
Tim Ricken ◽  
...  

1985 ◽  
Vol 65 (3) ◽  
pp. 411-418 ◽  
Author(s):  
T. VOLD ◽  
M. W. SONDHEIM ◽  
N. K. NAGPAL

Soil erosion potential maps and summary statistics can be produced from existing information with relative ease with the aid of computers. Soil maps are digitized and survey information is stored as attributes for each soil. Algorithms are then prepared which evaluate the appropriate data base attributes (e.g. texture, slope) for each interpretation. Forty surface soil erosion potential maps were produced for the Lower Fraser Valley which identify the most erosion-prone areas and indicate average potential soil losses to be expected under assumed conditions. The algorithm developed follows the universal soil loss equation. Differences across the landscape in the R, K, and S factors are taken into account whereas the L factor is considered as a constant equal to 1.0. Worst conditions of bare soil (no crop cover, i.e. C = 1.0) and no erosion control practices (i.e. P = 1.0) are assumed. The five surface soil erosion potential classes are determined by a weighted average annual soil loss value based both on the upper 20 cm of mineral soil and on the proportion of the various soils in the polygon. A unique polygon number shown on the erosion potential map provides a link to computer tables which give additional information for each individual soil within that polygon. Key words: Erosion, computer mapping, USLE


2018 ◽  
Vol 36 (4) ◽  
pp. 361-372 ◽  
Author(s):  
Afshin Khoshand ◽  
Ali Fathi ◽  
Milad Zoghi ◽  
Hamidreza Kamalan

One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 985-995 ◽  
Author(s):  
Q. Dai ◽  
Z. Liu ◽  
H. Shao ◽  
Z. Yang

Abstract. The influence on soil erosion by different bedrock bareness ratios, different rainfall intensities, different underground pore fissure degrees and rainfall duration are researched through manual simulation of microrelief characteristics of karst bare slopes and underground karst crack construction in combination with artificial simulation of rainfall experiment. The results show that firstly, when the rainfall intensity is small (30 and 50 mm h−1), no bottom load loss is produced on the surface, and surface runoff, underground runoff and sediment production are increased with the increasing of rainfall intensity. Secondly, surface runoff and sediment production reduced with increased underground pore fissure degree, while underground runoff and sediment production increased. Thirdly, raindrops hit the surface, forming a crust with rainfall duration. The formation of crusts increases surface runoff erosion and reduces soil infiltration rate. This formation also increases surface-runoff-erosion-damaged crust and increased soil seepage rate. Raindrops continued to hit the surface, leading the formation of crust. Soil permeability showed volatility which was from reduction to increases, reduction, and so on. Surface and subsurface runoff were volatile with rainfall duration. Fourthly, when rock bareness ratio is 50 % and rainfall intensities are 30 and 50 mm h−1, runoff is not produced on the surface, and the slope runoff and sediment production present a fluctuating change with increased rock bareness ratio. Fifthly, the correlation degree between the slope runoff and sediment production and all factors are as follows: rainfall intensity-rainfall duration-underground pore fissure degree–bedrock bareness ratio.


Sign in / Sign up

Export Citation Format

Share Document