scholarly journals CFD MODEL OF A MAGNETORHEOLOGICAL FLUID IN SQUEEZE MODE

2013 ◽  
Vol 7 (3) ◽  
pp. 180-183 ◽  
Author(s):  
Bogdań Sapiński ◽  
Marcin Szczęch

Abstract The study briefly outlines a CFD model of a magnetorheological (MR) fluid operated in squeeze mode with a constant interface area using the CFD (Computational Fluid Dynamics) approach. The underlying assumption is that the MR fluid is placed between two surfaces of which at least one can be subject to a prescribed displacement or a force input. The widely employed Bingham model, which fails to take into account the yield stress variations depending on the height of the gap, has been modified. Computation data obtained in the ANSYS CFX environment are compared with experimental results.

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Xue Guan Song ◽  
Lin Wang ◽  
Young Chul Park

A spring-loaded pressure safety valve (PSV) is a key device used to protect pressure vessels and systems. This paper developed a three-dimensional computational fluid dynamics (CFD) model in combination with a dynamics equation to study the fluid characteristics and dynamic behavior of a spring-loaded PSV. The CFD model, which includes unsteady analysis and a moving mesh technique, was developed to predict the flow field through the valve and calculate the flow force acting on the disk versus time. To overcome the limitation that the moving mesh technique in the commercial software program ANSYS CFX (Version 11.0, ANSYS, Inc., USA) cannot handle complex configurations in most applications, some novel techniques of mesh generation and modeling were used to ensure that the valve disk can move upward and downward successfully without negative mesh error. Subsequently, several constant inlet pressure loads were applied to the developed model. Response parameters, including the displacement of the disk, mass flow through the valve, and fluid force applied on the disk, were obtained and compared with the study of the behavior of the PSV under different overpressure conditions. In addition, the modeling approach could be useful for valve designers attempting to optimize spring-loaded PSVs.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


2021 ◽  
Vol 11 (5) ◽  
pp. 2391
Author(s):  
Jose I. Huertas ◽  
Javier E. Aguirre ◽  
Omar D. Lopez Mejia ◽  
Cristian H. Lopez

The effects of using solid barriers on the dispersion of air pollutants emitted from the traffic of vehicles on roads located over flat areas were quantified, aiming to identify the geometry that maximizes the mitigation effect of air pollution near the road at the lowest barrier cost. Toward that end, a near road Computational Fluid Dynamics (NR-CFD) model that simulates the dispersion phenomena occurring in the near-surface atmosphere (<250 m high) in a small computational domain (<1 km long), via Computational Fluid Dynamics (CFD) was used. Results from the NR-CFD model were highly correlated (R2 > 0.96) with the sulfur hexafluoride (SF6) concentrations measured by the US-National Oceanic and Atmospheric Administration (US-NOAA) in 2008 downwind a line source emission, for the case of a 6m near road solid straight barrier and for the case without any barrier. Then, the effects of different geometries, sizes, and locations were considered. Results showed that, under all barrier configurations, the normalized pollutant concentrations downwind the barrier are highly correlated (R2 > 0.86) to the concentrations observed without barrier. The best cost-effective configuration was observed with a quarter-ellipse barrier geometry with a height equivalent to 15% of the road width and located at the road edge, where the pollutant concentrations were 76% lower than the ones observed without any barrier.


Author(s):  
Y K Ahn ◽  
J-Y Ha ◽  
Y-H Kim ◽  
B-S Yang ◽  
M Ahmadian ◽  
...  

This paper presents an analytical and experimental analysis of the characteristics of a squeeze-type magnetorheological (MR) mount which can be used for various vibration isolation areas. The concept of the squeeze-type mount and details of the design of a squeeze-type MR mount are discussed. These are followed by a detailed description of the test set-up for evaluating the dynamic behaviour of the mount. A series of tests was conducted on the prototype mount built for this study, in order to characterize the changes occurring as a result of changing electrical current to the mount. The results of this study show that increasing electrical current to the mount, which increases the yield stress of the MR fluid, will result in an increase in both stiffness and damping of the mount. The results also show that the mount hysteresis increases with increase in current to the MR fluid, causing changes in stiffness and damping at different input frequencies.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Jin Huang ◽  
Ping Wang ◽  
Guochao Wang

Magnetorheological (MR) disk-type isolating dampers are the semi-active control devices that use MR fluids to produce controllable squeezing force. In this paper, the analytical endeavor into the fluid dynamic modeling of an MR isolating damper is reported. The velocity and pressure distribution of an MR fluid operating in an axisymmetric squeeze model are analytically solved using a biviscosity constitutive model. Analytical solutions for the flow behavior of MR fluid flowing through the parallel channel are obtained. The equation for the squeezing force is derived to provide the theoretical foundation for the design of the isolating damper. The result shows that with the increase of the applied magnetic field strength, the squeezing force is increased.


2014 ◽  
Vol 53 (37) ◽  
pp. 14526-14543 ◽  
Author(s):  
Dale D. McClure ◽  
Hannah Norris ◽  
John M. Kavanagh ◽  
David F. Fletcher ◽  
Geoffrey W. Barton

2020 ◽  
Vol 10 (23) ◽  
pp. 8573
Author(s):  
Franco Concli

For decades, journal bearings have been designed based on the half-Sommerfeld equations. The semi-analytical solution of the conservation equations for mass and momentum leads to the pressure distribution along the journal. However, this approach admits negative values for the pressure, phenomenon without experimental evidence. To overcome this, negative values of the pressure are artificially substituted with the vaporization pressure. This hypothesis leads to reasonable results, even if for a deeper understanding of the physics behind the lubrication and the supporting effects, cavitation should be considered and included in the mathematical model. In a previous paper, the author has already shown the capability of computational fluid dynamics to accurately reproduce the experimental evidences including the Kunz cavitation model in the calculations. The computational fluid dynamics (CFD) results were compared in terms of pressure distribution with experimental data coming from different configurations. The CFD model was coupled with an analytical approach in order to calculate the equilibrium position and the trajectory of the journal. Specifically, the approach was used to study a bearing that was designed to operate within tight tolerances and speeds up to almost 30,000 rpm for operation in a gearbox.


Author(s):  
Deval Pandya ◽  
Brian Dennis ◽  
Ronnie Russell

In recent years, the study of flow-induced erosion phenomena has gained interest as erosion has a direct influence on the life, reliability and safety of equipment. Particularly significant erosion can occur inside the drilling tool components caused by the low particle loading (<10%) in the drilling fluid. Due to the difficulty and cost of conducting experiments, significant efforts have been invested in numerical predictive tools to understand and mitigate erosion within drilling tools. Computational fluid dynamics (CFD) is becoming a powerful tool to predict complex flow-erosion and a cost-effective method to re-design drilling equipment for mitigating erosion. Existing CFD-based erosion models predict erosion regions fairly accurately, but these models have poor reliability when it comes to quantitative predictions. In many cases, the error can be greater than an order of magnitude. The present study focuses on development of an improved CFD-erosion model for predicting the qualitative as well as the quantitative aspects of erosion. A finite-volume based CFD-erosion model was developed using a commercially available CFD code. The CFD model involves fluid flow and turbulence modeling, particle tracking, and application of existing empirical erosion models. All parameters like surface velocity, particle concentration, particle volume fraction, etc., used in empirical erosion equations are obtained through CFD analysis. CFD modeling parameters like numerical schemes, turbulence models, near-wall treatments, grid strategy and discrete particle model parameters were investigated in detail to develop guidelines for erosion prediction. As part of this effort, the effect of computed results showed good qualitative and quantitative agreement for the benchmark case of flow through an elbow at different flow rates and particle sizes. This paper proposes a new/modified erosion model. The combination of an improved CFD methodology and a new erosion model provides a novel computational approach that accurately predicts the location and magnitude of erosion. Reliable predictive methodology can help improve designs of downhole equipment to mitigate erosion risk as well as provide guidance on repair and maintenance intervals. This will eventually lead to improvement in the reliability and safety of downhole tool operation.


Sign in / Sign up

Export Citation Format

Share Document