scholarly journals Microstructural Characterization of Several Coatings Deposited on Tialnb Intermetallic Alloy/ Charakterystyka Mikrostruktury Wybranych Warstw Wytworzonych Na Podłożu >Stopu Tytanu Na Osnowie Fazy Międzymetalicznej Tialnb

2014 ◽  
Vol 59 (4) ◽  
pp. 1547-1551 ◽  
Author(s):  
M. Góral ◽  
M. Pytel ◽  
K. Dychton

Abstract Titanium alloys based on the γ -TiAl intermetallic phase are a type of material which may replace nickel supperalloys in high temperature applications. Not enough resistance to corrosion at temperatures above 900°C remains the biggest limitation in industrial practices. The paper presents results of preliminary research into application of new type heat resistant coatings on the basis of γ -TiAl alloy. MeCrAlY and Si coatings were formed by pack cementation method. Aluminide coatings were deposited by pack cementation method and VPA. Research results have shown that except for the coating formed by VPA, coatings were characterized by high porosity and therefore would not ensure appropriate protection against oxidation. Further research will be necessary into application of the VPA method in protecting γ-TiAl titanium alloys in order to improve their heat resistance.

2014 ◽  
Vol 1036 ◽  
pp. 164-167 ◽  
Author(s):  
Grzegorz Moskal ◽  
Lucjan Swadźba ◽  
Wacław Supernak ◽  
Marta Mikuśkiewicz ◽  
Adrian Mościcki ◽  
...  

Characterization of microstructure of silicide coatings obtained during diffusion process of pack cementation type was showed in this article. The basic materials were pure Mo sheet and TZM molybdenum alloys as well. The coatings were deposited in out of pack process with three different times of exposure. The temperature of deposition process was constant. In first step the phases compositions of coatings was described by XRD analysis. In each cases the MoSi2 phase was obtained on top surface of the coatings. The morphology of the coatings was very similar as well. All types of coatings were characterized by network of cracks on top surface of the coatings. There was no influence of depositions time on phases constituent and coatings topography. LM and SEM analysis revealed that internal coatings morphology was very similar in all cases. Basic differences was related to the thickness of coatings. All coatings were good quality without deep cracks. Microstructure was a columnar-like type without pores and voids.


2016 ◽  
Vol 869 ◽  
pp. 935-939 ◽  
Author(s):  
M.R. Seixas ◽  
C. Bortolini Jr. ◽  
R.T. Konatu ◽  
A. Pereira Jr. ◽  
Ana Paula Rosifini Alves Claro

Titanium and its alloys have been used in biomedical applications due to their excellent properties such as high corrosion resistance, biocompatibility and mechanical properties. In orthodontics, initially, it was common to use nickel-titanium alloys, however due to allergic reactions of patients, new titanium alloys containing elements such as niobium and tantalum are being studied. The Ti-25Ta-25Nb alloy is a β-titanium alloy and it has a low elastic modulus. In the present work, the ternary alloy was evaluated after cold work by swaging followed by solubilization treatment. Microstructure and mechanical properties were evaluated after each step of the process. Results were similar to find in the literature for this alloy obtained by other processing rote.


2005 ◽  
Vol 498-499 ◽  
pp. 34-39 ◽  
Author(s):  
Elisa B. Taddei ◽  
Vinicius André Rodrigues Henriques ◽  
Cosme Roberto Moreira Silva ◽  
Carlos Alberto Alves Cairo

Abstract: Titanium and titanium alloys present the highest biocompatibility among metallic biomaterials. The ideal titanium alloy for orthopedic applications should have low modulus of elasticity (near the bone), excellent mechanical strength, high corrosion resistance, formability and no potential toxic elements. Among titanium alloys, the Ti-35Nb-7Zr-5Ta alloy, due its high biocompatibility and lower Young’s modulus is a promising candidate for implants material. The titanium alloys production by powder metallurgy, starting from the elementary powders, is a viable route due at the smaller costs and larger operational facilities. The Ti-35Nb-7Zr-5Ta samples were manufactured by blended elemental method from a sequence of uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 at 1700 °C, in vacuum, under a heating rate of 20 °C×min-1 for 1h. The objective of this work is the analysis of alloy microstructural evolution from the powders dissolution under the increase of the sintering temperature. For the alloy microstructural characterization, scanning electron microscopy and Vickers microhardness measurements, were used. Density was measured by Archimedes method. The samples presented high densification, an homogeneous microstructural development, with complete dissolution of alloying elements in the titanium matrix with the temperature increase.


Author(s):  
G. Moskal ◽  
M. Góral ◽  
L. Swadźba ◽  
B. Mendala ◽  
M. Hetmańczyk ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 192-195 ◽  
Author(s):  
Sónia Simões ◽  
Ana Soares ◽  
Carlos José Tavares ◽  
Aníbal Guedes

AbstractThe aim of this study is to evaluate the potential use of titanium foil coated with sputtered silver and copper films as a novel brazing filler for joining TiAl alloys. For this purpose, a detailed microstructural characterization of the resulting brazing interfaces was carried out. The development of brazing fillers that allow the joining of TiAl alloys without compromising the service temperature is a fruitful prospect. Brazing experiments were performed in a vacuum at 900, 950, and 980°C, with a dwell time of 30 min. Microstructural characterization reveals that brazing joints can be obtained successfully at 950 and 980°C. The interface consists of a large central region of α-Ti with an amount of Al and Ti–Ag compound and thin layers, mainly composed of intermetallic compounds, formed close to the base material. A novel brazing filler consisting of Ti foil coated with sputtered Ag and Cu films inhibits the extensive formation of soft (Ag) zones or coarse brittle Ti–Al–(Cu,Ni) particles. Hence, the need for post-brazing heat treatments for the joining of TiAl alloys was avoided.


Sign in / Sign up

Export Citation Format

Share Document