Mechanical and Microstructural Characterization of the Ti-25Ta-25Nb Alloy for Dental Applications

2016 ◽  
Vol 869 ◽  
pp. 935-939 ◽  
Author(s):  
M.R. Seixas ◽  
C. Bortolini Jr. ◽  
R.T. Konatu ◽  
A. Pereira Jr. ◽  
Ana Paula Rosifini Alves Claro

Titanium and its alloys have been used in biomedical applications due to their excellent properties such as high corrosion resistance, biocompatibility and mechanical properties. In orthodontics, initially, it was common to use nickel-titanium alloys, however due to allergic reactions of patients, new titanium alloys containing elements such as niobium and tantalum are being studied. The Ti-25Ta-25Nb alloy is a β-titanium alloy and it has a low elastic modulus. In the present work, the ternary alloy was evaluated after cold work by swaging followed by solubilization treatment. Microstructure and mechanical properties were evaluated after each step of the process. Results were similar to find in the literature for this alloy obtained by other processing rote.

2020 ◽  
Vol 1012 ◽  
pp. 466-470
Author(s):  
Mariana Lima de Almeida ◽  
Caio Marcello Felbinger Azevedo Cossú ◽  
Carlos Angelo Nunes ◽  
Luiz Henrique de Almeida ◽  
Sinara Borborema

The β-titanium alloys have properties such as low elastic modulus associated with good properties mechanical, higher corrosion resistance and biocompatibility properties ideal for orthopedic application. Recent studies showed that the traditional Ti–6Al–4V alloy (α+β type) presented biological toxicity due to the presence of Al and V in its composition. In this scenario the present work aims at the fabrication and characterization of the microstructure and the mechanical properties of the as–cast Ti-12Mo-25Nb alloy. This alloy was produced by arc melting with non-consumable tungsten electrode in argon atmosphere. The material was characterized by X–ray diffraction, optical microscopy, Vickers hardness and elastic modulus by impulse excitation. The results of the microstructural characterization showed the presence of the β single phase, hardness equal to 207HV and the elastic modulus equal to 77GPa. These characteristics shows that this alloy is suitable for biomedical application such as implants.


2021 ◽  
Vol 903 ◽  
pp. 11-16
Author(s):  
M.A. Manjunath ◽  
K. Naveen ◽  
Prakash Vinod ◽  
N. Balashanmugam ◽  
M.R. Shankar

Polymethyl methacrylate (PMMA) is one among few known photo-polymeric resin useful in lithography for fabricating structures having better mechanical properties to meet the requirement in electronics and biomedical applications. This study explores the effect of Photo Initiator (PI) concentration and also curing time on strength and hardness of Polymethyl methacrylate (PMMA) obtained by UV photopolymerization of Methyl methacrylate (MMA) monomer. The UV LED light source operating at the wavelength of 364 nm is used with Benzoin Ethyl Ether (BEE) as photo initiator. The curing of PMMA resin is supported with peltier cooling device placed at the bottom of the UV light source. The characterisation study of UV photo cured PMMA is analysed through nano indenter (Agilent Technologies-G200). The current work investigates the influence of PI concentration and curing time in achieving maximum mechanical properties for UV photopolymerized PMMA.


2021 ◽  
Vol 1016 ◽  
pp. 137-144
Author(s):  
Pedro Akira Bazaglia Kuroda ◽  
Fernanda de Freitas Quadros ◽  
Mycaela Vieira Nascimento ◽  
Carlos Roberto Grandini

This paper deals with the study of the development, structural and microstructural characterization and, selected mechanical properties of Ti-25Ta-50Zr alloy for biomedical applications. The alloy was melted in an arc furnace and various solution heat treatments were performed to analyze the influence of the temperature and time on the structure, microstructure, microhardness and elastic modulus of the samples. The structural and microstructural results, obtained by X-ray diffraction and microscopy techniques, showed that the solution heat treatment performed at high temperatures induces the formation of the β phase, while solution heat treatment performed at low temperatures induces the formation of the α” and ω metastable phases. Regarding the effect of time, samples subjected to heat treatment for 6 hours have only the β phase, indicating that lengthy treatments suppress the α” phase. Regarding the hardness and elastic modulus, the alloy with the α” and ω phases, after treatment performed at a temperature of 500 °C, has a high hardness value and elastic modulus due to the presence of the ω phase that hardens and weakens alloys. The titanium alloys developed in this study have excellent mechanical properties results for use in the orthopedic area, better than many commercial materials such as cp-Ti, stainless steel and Co-Cr alloys.


Sign in / Sign up

Export Citation Format

Share Document