scholarly journals Experimental investigation of the ecological hybrid refrigeration cycle

2014 ◽  
Vol 35 (3) ◽  
pp. 145-154
Author(s):  
Piotr Cyklis ◽  
Ryszard Kantor ◽  
Tomasz Ryncarz ◽  
Bogusław Górski ◽  
Roman Duda

Abstract The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

Author(s):  
Maximilian Rödder ◽  
Matthias Neef ◽  
Christoph Laux ◽  
Klaus-P. Priebe

The organic Rankine cycle (ORC) is an established thermodynamic process that converts waste heat to electric energy. Due to the wide range of organic working fluids available the fluid selection adds an additional degree of freedom to the early design phase of an ORC process. Despite thermodynamic aspects such as the temperature level of the heat source, other technical, economic and safety aspects have to be considered. For the fluid selection process in this paper, 22 criteria were identified in six main categories while distinguishing between elimination and tolerance criteria. For an ORC design, the suggested method follows a practical engineering approach and can be used as a structured way to limit the number of interesting working fluids before starting a detailed performance analysis of the most promising candidates. For the first time the selection process is applied to a two-stage reference cycle which uses the waste heat of a large reciprocating engine for cogeneration power plants. It consists of a high temperature and a low temperature cycle in which the condensation heat of the high temperature (HT) cycle provides the heat input of the low temperature (LT) cycle. After the fluid selection process the detailed thermodynamic cycle design is carried out with a thermodynamic design tool that also includes a database for organic working fluids. The investigated ORC cycle shows a net thermal efficiency of about 17,4% in the high temperature cycle with Toluene as the working fluid and 6,2% in low temperature cycle with iso-Butane as the working fluid. The electric efficiency of the cogeneration plant increases from 40,4% to 46,97% with the both stages of the two-stage ORC in operation.


Author(s):  
Maximilian Roedder ◽  
Matthias Neef ◽  
Christoph Laux ◽  
Klaus-P. Priebe

The organic Rankine cycle (ORC) is an established thermodynamic process that converts waste heat to electric energy. Due to the wide range of organic working fluids available the fluid selection adds an additional degree-of-freedom to the early design phase of an ORC process. Despite thermodynamic aspects such as the temperature level of the heat source, other technical, economic, and safety aspects have to be considered. For the fluid selection process in this paper, 22 criteria were identified in six main categories while distinguishing between elimination (EC) and tolerance criteria (TC). For an ORC design, the suggested method follows a practical engineering approach and can be used as a structured way to limit the number of interesting working fluids before starting a detailed performance analysis of the most promising candidates. For the first time, the selection process is applied to a two-stage reference cycle, which uses the waste heat of a large reciprocating engine for cogeneration power plants. It consists of a high temperature (HT) and a low temperature (LT) cycle in which the condensation heat of the HT cycle provides the heat input of the LT cycle. After the fluid selection process, the detailed thermodynamic cycle design is carried out with a thermodynamic design tool that also includes a database for organic working fluids. The investigated ORC cycle shows a net thermal efficiency of about 17.4% in the HT cycle with toluene as the working fluid and 6.2% in LT cycle with isobutane as the working fluid. The electric efficiency of the cogeneration plant increases from 40.4% to 46.97% with the both stages of the two-stage ORC in operation.


1998 ◽  
Vol 13 (11) ◽  
pp. 843-852 ◽  
Author(s):  
P. F. BORGES ◽  
H. BOSCHI-FILHO ◽  
C. FARINA

We show that the assumption of quasiperiodic boundary conditions (those that interpolate continuously periodic and antiperiodic conditions) in order to compute partition functions of relativistic particles in 2+1 space–time can be related with anyonic physics. In particular, in the low temperature limit, our result leads to the well-known second virial coefficient for anyons. Besides, we also obtain the high temperature limit as well as the full temperature dependence of this coefficient.


Solar Energy ◽  
2002 ◽  
Author(s):  
Gunmar Tamm ◽  
D. Yogi Goswami ◽  
Shaoguang Lu ◽  
Afif A. Hasan

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or an independent cycle using low temperature sources such as geothermal and solar energy. Initial parametric studies of the cycle showed the potential for the cycle to be optimized for first or second law efficiency, as well as work or cooling output. For a solar heat source, optimization of the second law efficiency is most appropriate, since the spent heat source fluid is recycled through the solar collectors. The optimization results verified that the cycle could be optimized using the Generalized Reduced Gradient method. Theoretical results were extended to include realistic irreversibilities in the cycle, in preparation for the experimental study.


Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.


2013 ◽  
Vol 665 ◽  
pp. 154-158
Author(s):  
Digish K. Patel ◽  
K.N. Vyas ◽  
A.C. Sharma

Apart from its promising new material for technological innovations and applications, graphene offers a new and novel physics. In recent past, both single layer and bilayer Graphene have extensively been studied. Properties of Graphene sharply differ from that of 2DEG observed in doped semiconductor heterostructures. One of the important properties requisite for device making is charge transport. It has been suggested that considering a scattering mechanism based on screened charged impurities, one can obtain from a Boltzmann equation approach a conductivity that agrees with the experimental result on graphene. In this paper, we present a calculation of electron-impurity scattering rate, as a function of quasi particle energy ε measured from Fermi energy εf, in doped bilayer graphene for both high temperature TTf and low temperature TTf regimes. In the low temperature limit, we observe dip at normalized energy y=1.0, which is absent in the high temperature limit. Our numerical calculation shows that scattering rate remains almost constant with temperature in both regimes.


Author(s):  
Muhammad Ansab Ali ◽  
Tariq Saeed Khan ◽  
Ebrahim Al Hajri ◽  
Zahid H. Ayub

Fossil fuels are continuously depleting while the global energy demand is growing at a fast rate. Additionally, fossil fuels based power plants contribute to environmental pollution. Search for alternate energy resources and use of industrial waste heat for power production are attractive topics of interest these days. One way of enhancing power production and decreasing the environmental impact is by recuperating and utilizing low grade thermal energy. In recent years, research on use of organic Rankine cycle (ORC) has gained popularity as a promising technology for conversion of heat into useful work or electricity. Due to simple structure of ORC system, it can be easily integrated with any energy source like geothermal energy, solar energy and waste heat. A computer program has been developed in engineering equation solver (EES) environment that analyzes and selects appropriate working fluid for organic Rankine cycle design based on available heat sources. For a given heat source, the program compares energy and exergy performance of various working fluids. The program also includes recuperator performance analysis and compares its effectiveness on the overall thermal performance of the Rankine cycle. This program can assist in preliminary design of ORC with respect to best performing refrigerant fluid selection for the given low temperature heat source.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1506
Author(s):  
Thao P. Le ◽  
Andreas Winter ◽  
Gerardo Adesso

Under the influence of external environments, quantum systems can undergo various different processes, including decoherence and equilibration. We observe that macroscopic objects are both objective and thermal, thus leading to the expectation that both objectivity and thermalisation can peacefully coexist on the quantum regime too. Crucially, however, objectivity relies on distributed classical information that could conflict with thermalisation. Here, we examine the overlap between thermal and objective states. We find that in general, one cannot exist when the other is present. However, there are certain regimes where thermality and objectivity are more likely to coexist: in the high temperature limit, at the non-degenerate low temperature limit, and when the environment is large. This is consistent with our experiences that everyday-sized objects can be both thermal and objective.


Sign in / Sign up

Export Citation Format

Share Document