scholarly journals Adverse and Beneficial Effects of Woody Biomass Feedstock Plantations on Biodiversity and Wildlife Habitats

2019 ◽  
Vol 16 (2) ◽  
pp. 25-33
Author(s):  
Sándor Némethy ◽  
László Szemethy

AbstractWoody biomass feedstock is suitable for direct combustion, gasification, pyrolysis, ethanol or methanol production yielding heat, charcoal, pyrolysis oil, green electricity and bio-propellants. However, there are several issues concerning the environmental, social and economic sustainability of woody biomass production connected to land use, protection of wildlife habitats, conservation and remediation of landscapes. Establishing energy plantations on arable lands or on grasslands is generally considered as working against nature conservation, while setting them up in polluted areas or wastelands could be advantageous for wildlife, because of 1. more permanent cover that provides shelter and biomass for feeding, which is especially important in winter periods; 2. higher architectural complexity of vegetation providing more place for nesting and feeding for wildlife; 3. exploiting the advantages of root filtration, phytoremediation, or using less chemicals; 4. forbs in the undergrowth and young shoots able to provide better quality food for wildlife than the intensive monocultures. The solution is a complex management system, including land use, phytoremediation, waste and wastewater management and ecosystem-based planning incorporated in one dynamic structure.

2016 ◽  
Vol 110 ◽  
pp. 240-248 ◽  
Author(s):  
Jim Andersson ◽  
Erik Furusjö ◽  
Elisabeth Wetterlund ◽  
Joakim Lundgren ◽  
Ingvar Landälv

2016 ◽  
Vol 19 (5) ◽  
pp. 788-813 ◽  
Author(s):  
Shepherd Mudavanhu ◽  
James Blignaut ◽  
Nonophile Nkambule ◽  
Tshepo Morokong ◽  
Thulile Vundla

Invasive alien plants (IAPs) like Rooikrans (Acacia Cyclops) have several undesirable effects on both the natural environment and the social, economic and cultural wellness of society in the De Hoop nature reserve of the Western Cape Province. A few of these negative effects are: the change in coastal sediment dynamics, the change in seed dispersal dynamics, and the fact that it is overtaking native plants. However, Rooikrans can also potentially be used as biomass feedstock for electricity generation. Following a system dynamics modelling approach, the feasibility of using woody biomass from Rooikrans was investigated. The RE-model used data obtained from the Department of Environmental Affairs’ (DEA) Natural Resource Management (NRM) division, consulted with experts and conducted literature reviews with respect to the subject matter. Three scenarios were tested and the RE-model results showed that all scenarios have a positive cumulative Net Present Values (NPVs), with the exception of the baseline case scenario. This study shows that the production of electricity using Rooikrans woody biomass is a viable and feasible option in comparison with electricity production by diesel generators.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 159 ◽  
Author(s):  
Thomas Ochuodho ◽  
Janaki Alavalapati ◽  
Pankaj Lal ◽  
Domena Agyeman ◽  
Bernabas Wolde ◽  
...  

The growing attention to renewable energy and rural development has created greater demand for production of biomass feedstock for bioenergy. However, forest growth rates and the amount of land in most existing forests may not be sufficient to sustainably supply the forest biomass required to support existing forest products industries and the expanding bioenergy industry. Additionally, concerns about agricultural land use competition have dampened expansion of biomass production on agricultural land base. One of the ways to meet the growing forest biomass feedstock demand for bioenergy production is by allocating currently marginal non-forested land for growing bioenergy feedstocks. In Virginia, about 80% of forestland is under nonindustrial private forest ownership. The land use allocation decisions of these private owners are critical for the supply of the forest biomass feedstock to support bioenergy production. We apply a computable general equilibrium model to assess the economy-wide impacts of forestland owners’ willingness to plant pine on non-forested land for woody bioenergy in Virginia. We consider three counterfactual scenarios of biomass feedstock supply increase as intermediate demand for bioenergy production based on forestland owners’ willingness to accept biomass bid prices to set aside more non-forested land for biomass production in Virginia under general equilibrium conditions. Overall, the results show an increase in social welfare and household utility but a marginal decline in GDP. However, increased demand of biomass from logging sector depressed the manufacturing sector (the wood manufacturing sub-sector particularly), which also relies on the logging sector for its intermediate inputs. Results from this study provide insights into the bioenergy land use competition debate, and pathways towards sustainable bioenergy feedstock supply.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Carmen L. Tubbesing ◽  
José Daniel Lara ◽  
John J. Battles ◽  
Peter W. Tittmann ◽  
Daniel M. Kammen

1997 ◽  
Vol 43 (10) ◽  
pp. 895-914 ◽  
Author(s):  
J. Hallmann ◽  
A. Quadt-Hallmann ◽  
W. F. Mahaffee ◽  
J. W. Kloepper

Endophytic bacteria are ubiquitous in most plant species, residing latently or actively colonizing plant tissues locally as well as systemically. Several definitions have been proposed for endophytic bacteria; in this review endophytes will be defined as those bacteria that can be isolated from surface-disinfested plant tissue or extracted from within the plant, and that do not visibly harm the plant. While this definition does not include nonextractable endophytic bacteria, it is a practical definition based on experimental limitations and is inclusive of bacterial symbionts, as well as internal plant-colonizing nonpathogenic bacteria with no known beneficial or detrimental effects on colonized plants. Historically, endophytic bacteria have been thought to be weakly virulent plant pathogens but have recently been discovered to have several beneficial effects on host plants, such as plant growth promotion and increased resistance against plant pathogens and parasites. In general, endophytic bacteria originate from the epiphytic bacterial communities of the rhizosphere and phylloplane, as well as from endophyte-infested seeds or planting materials. Besides gaining entrance to plants through natural openings or wounds, endophytic bacteria appear to actively penetrate plant tissues using hydrolytic enzymes like cellulase and pectinase. Since these enzymes are also produced by pathogens, more knowledge on their regulation and expression is needed to distinguish endophytic bacteria from plant pathogens. In general, endophytic bacteria occur at lower population densities than pathogens, and at least some of them do not induce a hypersensitive response in the plant, indicating that they are not recognized by the plant as pathogens. Evolutionarily, endophytes appear to be intermediate between saprophytic bacteria and plant pathogens, but it can only be speculated as to whether they are saprophytes evolving toward pathogens, or are more highly evolved than plant pathogens and conserve protective shelter and nutrient supplies by not killing their host. Overall, the endophytic microfloral community is of dynamic structure and is influenced by biotic and abiotic factors, with the plant itself constituting one of the major influencing factors. Since endophytic bacteria rely on the nutritional supply offered by the plant, any parameter affecting the nutritional status of the plant could consequently affect the endophytic community. This review summarizes part of the work being done on endophytic bacteria, including their methodology, colonization, and establishment in the host plant, as well as their role in plant–microbe interactions. In addition, speculative conclusions are raised on some points to stimulate thought and research on endophytic bacteria.Key words: endophytic bacteria, methods, localization, diversity, biological control.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joseph Millard ◽  
Charlotte L. Outhwaite ◽  
Robyn Kinnersley ◽  
Robin Freeman ◽  
Richard D. Gregory ◽  
...  

AbstractPollinating species are in decline globally, with land use an important driver. However, most of the evidence on which these claims are made is patchy, based on studies with low taxonomic and geographic representativeness. Here, we model the effect of land-use type and intensity on global pollinator biodiversity, using a local-scale database covering 303 studies, 12,170 sites, and 4502 pollinating species. Relative to a primary vegetation baseline, we show that low levels of intensity can have beneficial effects on pollinator biodiversity. Within most anthropogenic land-use types however, increasing intensity is associated with significant reductions, particularly in urban (43% richness and 62% abundance reduction compared to the least intensive urban sites), and pasture (75% abundance reduction) areas. We further show that on cropland, the strongly negative response to intensity is restricted to tropical areas, and that the direction and magnitude of response differs among taxonomic groups. Our findings confirm widespread effects of land-use intensity on pollinators, most significantly in the tropics, where land use is predicted to change rapidly.


Sign in / Sign up

Export Citation Format

Share Document